Skip to main content
Log in

Large-scale structures as gradient lines: The case of the trkal flow

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2011

Abstract

Based on expansion terms of the Beltrami-flow type, we use multiscale methods to effectively construct an asymptotic expansion at large Reynolds numbers R for the long-wavelength perturbation of the nonstationary anisotropic helical solution of the force-free Navier—Stokes equation (the Trkal solution). We prove that the systematic asymptotic procedure can be implemented only in the case where the scaling parameter is R1/2. Projections of quasistationary large-scale streamlines on a plane orthogonal to the anisotropy direction turn out to be the gradient lines of the energy density determined by the initial conditions for two modulated anisotropic Beltrami flows (modulated as a result of scaling) with the same eigenvalues of the curl operator. The three-dimensional streamlines and the curl lines, not coinciding, fill invariant vorticity tubes inside which the velocity and vorticity vectors are collinear up to terms of the order of 1/R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Levich and A. Tsinober, Phys. Lett. A, 93, 293–297 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Levich and E. Tzvetkov, Phys. Lett. A, 100, 53–56 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Levich, Old and New Concepts Phys., 6, 239–457 (2009).

    Article  ADS  Google Scholar 

  4. A. Tsinober and E. Levích, Phys. Lett. A, 99, 321–324 (1983).

    Article  ADS  Google Scholar 

  5. H. K. Moffatt, J. Fluid Mech., 159, 359–378 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. H. K. Moffatt, J. Fluid Mech., 166, 359–378 (1986).

    Article  MATH  ADS  Google Scholar 

  7. H. K. Moffatt, “The topology of scalar fields in 2D and 3D turbulence,” in: IUTAM Symposium on Geometry and Statistics of Turbulence (Fluid Mech. Appl., Vol. 59, T. Kambe, T. Nakano, and T. Miyauchi, eds.), Kluwer, Dordrecht (2001), pp. 13–22.

    Google Scholar 

  8. V. Trkal, Časopis št. Mat., 48, 302–311 (1919).

    Google Scholar 

  9. Ya. Andreopoulos, Russ. J. Electrochemistry, 44, 390–396 (2008).

    Article  Google Scholar 

  10. Y. Choi, B.-G. Kim, and C Lee, Phys. Rev. E, 80, 017301 (2009).

    Article  ADS  Google Scholar 

  11. M. S. Lilley, S. Lovejoy, K. Strawbridge, D. Schertzer, and A. Radkevich, Quart. J. Roy. Meteor. Soc, 134, 301–315 (2008).

    Article  ADS  Google Scholar 

  12. S. Lovejoy, A. Tuck, S. Hovde, and D. Schertzer, Geophys. Res. Lett., 34, L15802 (2007).

    Article  ADS  Google Scholar 

  13. S. Lovejoy, D. Schertzer, M. Lilley, K. Strawbridge, and A. Radkevich, Quart. J. Roy. Meteor. Soc, 134, 277–300 (2008).

    Article  ADS  Google Scholar 

  14. R D. Mininni, A. Alexakis, and A. Pouquet, Phys. Rev. E, 74, 016303 (2006); arXiv:physics/0602148v2 (2006).

    Article  ADS  Google Scholar 

  15. P. D. Mininni, A. Alexakis, and A. Pouquet, Phys. Rev. E, 77, 036306 (2008); arXiv:0709.1939vl [physics.fludyn] (2007).

    Article  ADS  Google Scholar 

  16. J. Molinari and D. VoUaro, Monthly Weather Rev., 136, 4355–4372 (2008).

    Article  ADS  Google Scholar 

  17. Annick Pouquet, “Figures and videos,” http://www.image.ucar.edu/~pouquet/Figs.html.

  18. A. Radkevich, S. Lovejoy, K. Strawbridge, D. Schertzer, and M. Lilley, Quart. J. Roy. Meteor. Soc, 134, 317–335 (2008).

    Article  ADS  Google Scholar 

  19. G. I. Sivashinsky, Phys. D, 17, 243–255 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Libin and G. I. Sivashinsky, Quart. Appl. Math., 48, 611–623 (1990).

    MATH  MathSciNet  Google Scholar 

  21. A. Libin and G. I. Sivashinsky, Phys. Lett. A, 144, 172–178 (1990).

    Article  ADS  Google Scholar 

  22. L. Shtilman and G. Sivashinsky, J. de Physique, 47, 1137–1140 (1986).

    Article  Google Scholar 

  23. V. Yakhot and G. Sivashinsky, Phys. Rev. A, 35, 815–820 (1987).

    Article  ADS  Google Scholar 

  24. A. Libin, G. I. Sivashinsky, and E. Levich, Phys. Fluids, 30, 2984–2986 (1987).

    Article  MATH  ADS  Google Scholar 

  25. L. Polterovich, Private communication (2009).

  26. V. I. Arnold, Proc. Steklov Inst. Math., 258, 3–12 (2007).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 165, No. 2, pp. 350–369, November, 2010.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11232-011-0011-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libin, A.S. Large-scale structures as gradient lines: The case of the trkal flow. Theor Math Phys 165, 1534–1551 (2010). https://doi.org/10.1007/s11232-010-0128-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0128-x

Keywords

Navigation