Skip to main content
Log in

On the regularity of weak solutions to the fluid–rigid body interaction problem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study a 3D fluid–rigid body interaction problem. The fluid flow is governed by 3D incompressible Navier–Stokes equations, while the motion of the rigid body is described by a system of ordinary differential equations describing conservation of linear and angular momentum. Our aim is to prove that any weak solution satisfying certain regularity conditions is smooth. This is a generalization of the classical result for the 3D incompressible Navier–Stokes equations, which says that a weak solution that additionally satisfy Prodi–Serrin \(L^r-L^s\) condition is smooth. We show that in the case of fluid–rigid body the Prodi–Serrin conditions imply \(W^{2,p}\) and \(W^{1,p}\) regularity for the fluid velocity and fluid pressure, respectively. Moreover, we show that solutions are \(C^{\infty }\) if additionally we assume that the rigid body acceleration is bounded almost anywhere in time variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

There are no associated data corresponding to the manuscript.

Notes

  1. Let us mention also the conditional regularity of the type that one component of the velocity field is more regular, see [28].

References

  1. Amann, H.: Compact embeddings of vector valued Sobolev and Besov spaces. Glasnik Mat. 35(1), 161–177 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Bravin, M.: Energy Equality and Uniqueness of Weak Solutions of a “Viscous Incompressible Fluid + Rigid Body’’ System with Navier Slip-with-Friction Conditions in a 2D Bounded Domain. J. Math. Fluid Mech. 21(2), 21–23 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bravin, M.: On the 2D viscous incompressible fluid+ rigid body system with Navier conditions and unbounded energy. Comptes Rendus Math. 358, 303–319 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chemetov, N.V., Nečasová, Š, Muha, B.: Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition. J. Math. Phys. 60(1), 011505 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemetov, N.V., Nečasová, Š: The motion of the rigid body in the viscous fluid including collisions. Global solvability result. Nonlinear Anal. Real World Appl. 34, 416–445 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlos, C., Jorge, S.M.H., Marius, T.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equ. 25(5–6), 1019–1042 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Cumsille, P., Takahashi, T.: Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslov. Math. J. 58, 961–992 (2008)

    Article  MATH  Google Scholar 

  8. Desjardins, B., Esteban, M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desjardins, B., Esteban, M.J.: On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Commun. Partial Differ. Equ. 25(7–8), 1399–1413 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Dintelmann, E., Geissert, M., Hieber, M.: Strong \({L}^p\)-solutions to the Navier–Stokes flow past moving obstacles: the case of several obstacles and time dependent velocity. Trans. Am. Math. Soc. 361, 653–669 (2009)

    Article  MATH  Google Scholar 

  11. Escauriaza, L., Seregin, G.A., Sverak, V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58(2), 211–250 (2003)

    Article  MATH  Google Scholar 

  12. Fabes, E.B., Lewis, J.E., Riviere, N.M.: Boundary value problems for the Navier–Stokes equations. Am. J. Math. 99, 626–668 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fabes, E.B., Lewis, J.E., Riviere, N.M.: Singular integrals and hydrodynamic potentials. Am. J. Math. 99, 601–625 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feireisl, E.: On the motion of rigid bodies in a viscous fluid. Appl. Math. 47, 463–484 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feireisl, E.: On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3(3), 419–441 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary value problem. In: Fundamental Directions in Mathematical Fluid Mechanics Advances in Mathematical Fluid Mechanics, pp. 1–70. Birkhäuser, Basel (2000)

    Google Scholar 

  17. Geissert, M., Götze, K., Hieber, M.: \(L^p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365(3), 1393–1439 (2013)

    Article  MATH  Google Scholar 

  18. Gérard-Varet, D., Hillairet, M.: Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Commun. Pure Appl. Math. 67, 2022–2076 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giga, Y.: Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 218(2), 907–944 (2015)

    Google Scholar 

  20. Glass, O., Sueur, F.: Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Arch. Ration. Mech. Anal. 62, 186–212 (1986)

    Google Scholar 

  21. Muha, B., Nečasová, Š, Radošević, A.: A uniqueness result for 3D incompressible fluid-rigid body interaction problem. J. Math. Phys. 23(1), 1–39 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Gunzburger, M.D., Lee, H.-C., Seregin, G.A.: Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2(3), 219–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Inoue, A., Wakimoto, M.: On existence of solutions of the Navier–Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math 24(2), 303–319 (1977)

    MathSciNet  MATH  Google Scholar 

  24. Ladyzhenskaia, O.: Solution in the large of the nonstationary boundary value problem for the Navier–Stokes system with two space variables. Commun. Pure Appl. Math. 12, 427–433 (1959)

    Article  MathSciNet  Google Scholar 

  25. Leray, J.: Essai sur les mouvements plans d’un fluide visqueux que limitent des parois. J. Math. Pures Appl. 13, 331–418 (1934)

    MATH  Google Scholar 

  26. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maity, D., Tucsnak, M.: \(L^p\)-\(L^q\) maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems. In: Mathematical Analysis in Fluid Mechanics—Selected Recent Results, Volume 710 of Contemporary Mathematics, pp. 175–201. American Mathematical Society, Providence (2018)

    Google Scholar 

  28. Neustupa, J., Penel, P.: Regularity of a Suitable Weak Solution to the Navier–Stokes Equations as a Consequence of Regularity of One Velocity Component. Applied Nonlinear Analysis, pp. 391–402. Kluwer, New York (1999)

  29. Sohr, H.: Zur regularitätstheorie der instationären Gleichungen von Navier–Stoke. Math. Z. 184, 359–375 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Starovoitov, V.N.: Behavior of a rigid body in an incompressible viscous fluid near a boundary. In: Free Boundary Problems, Volume 147 of International Series of Numerical Mathematics, pp. 313–327. Birkhäuser, Basel (2004)

    Google Scholar 

  31. Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Takahashi, T., Tucsnak, M.: Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6, 53–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. von Wahl, W.: Regularity of weak solutions of the Navier–Stokes equations. Proc. Symp. Pure Appl. Math. 45, 497 (1986)

    Article  MathSciNet  Google Scholar 

  34. Wang, C.: Strong solutions for the fluid-solid systems in a 2-D domain. Asymptot. Anal. 89, 263–306 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the anonymous referee for providing a detailed and insightful review of the manuscript. The suggestions and comments provided by the referee helped us to improve the clarity and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Ethics declarations

Conflict of interest

Šárka Nečasová as the corresponding author declares on behalf of all authors, that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of B.M. leading to these results has been supported by Croatian Science Foundation under the project IP-2018-01-3706.

The research of Š.N. leading to these results has received funding from the Czech Sciences Foundation (GAČR), 22-01591S. Moreover, Š. N. has been supported by Praemium Academiae of Š. Nečasová. CAS is supported by RVO:67985840.

The research of A.R. leading to these results has been supported by Croatian Science Foundation under the project IP-2019-04-1140. Moreover, The research of A.R. leading to these results has received funding from the Czech Sciences Foundation (GAČR) 22-01591S, and by Praemium Academiae of Š. Nečasová.

Appendices

Appendix

1.1 Time derivatives-general case

In Sect. 4, we have presented the proof of Proposition 2.2 for case \(l=1\). Here we are going to present the induction step for general \(l\in {{\mathbb {N}}}\). The proof in general case is conceptually the same, but with more complicated expressions in the equations.

Let \(l\ge 1\) and let us assume that

$$\begin{aligned} \begin{aligned}&\partial _t^{l-1}\widetilde{\textbf{U}},\partial _t^{l-1}{\textbf{U}}\in W^{1,p}(\varepsilon ,T;L^p(\Omega _F))\cap L^{p}(\varepsilon ,T;W^{2,p}(\Omega _F)), \\&\partial _t^{l-1}\widetilde{P},\partial _t^{l-1}P\in L^{p}(\varepsilon ,T;{W^{1,p}(\Omega _F)\,/\,{{\mathbb {R}}}}), \\&\frac{\textrm{d} ^{l-1}}{\textrm{d} t ^{l-1}}\widetilde{\textbf{A}},\frac{\textrm{d} ^{l-1}}{\textrm{d} t ^{l-1}}{\textbf{A}}, \frac{\textrm{d} ^{l-1}}{\textrm{d} t ^{l-1}}\widetilde{\varvec{\Omega }},\frac{\textrm{d} ^{l-1}}{\textrm{d} t ^{l-1}}{\varvec{\Omega }}\in W^{1,p}(\varepsilon ,T), \end{aligned} \end{aligned}$$

for all \(\varepsilon >0\) and \(1\le p <\infty \). We consider the problem (3.1) with right hand side

$$\begin{aligned} \begin{aligned}&F^{*} = F_l^{*} = F(\textbf{U}^{*},P^{*}) + tF_l(\textbf{U},P) + \partial _t^l\textbf{U}, \\&G^{*} = G_l^{*} = G(\textbf{A}^{*}) + tG_l(\textbf{A}) + \frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}, \\&H^{*} = H_l^{*} = H(\varvec{\Omega }^{*}) + tH_l(\varvec{\Omega }) + \mathcal {J}\frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }, \end{aligned} \end{aligned}$$
(6.1)

where

$$\begin{aligned} F_l(\textbf{U},P)= & {} \sum _{p=0}^{l-1}\left( {\begin{array}{c}l\\ p\end{array}}\right) \left( \mathcal {F}_{l-p}\left( \partial _t^{p}\textbf{U}\right) - \mathcal {G}_{l-p}\left( \partial _t^{p}P \right) \right) \nonumber \\= & {} \sum _{p=0}^{l-1}\left( {\begin{array}{c}l\\ p\end{array}}\right) \Big ( \mathcal {L}_{l-p}\left( \partial _t^{p}\textbf{U}\right) - \mathcal {M}_{l-p}\left( \partial _t^{p}\textbf{U}\right) \nonumber \\{} & {} - \mathcal {N}_{l-p}\left( \partial _t^{p}\textbf{U}\right) - \mathcal {G}_{l-p}\left( \partial _t^{p}P \right) \Big ) \end{aligned}$$
(6.2)
$$\begin{aligned} G_l(\textbf{A})= & {} -\sum _{p=0}^{l-1}\left( {\begin{array}{c}l\\ p\end{array}}\right) \frac{\textrm{d} ^{l-p}}{\textrm{d} t ^{l-p}}\widetilde{\varvec{\Omega }}\times \frac{\textrm{d} ^{p}}{\textrm{d} t ^{p}}\textbf{A},\nonumber \\ H_l(\varvec{\Omega })= & {} -\sum _{p=0}^{l-1}\left( {\begin{array}{c}l\\ p\end{array}}\right) \frac{\textrm{d} ^{l-p}}{\textrm{d} t ^{l-p}}\widetilde{\varvec{\Omega }}\times \mathcal {J}\left( \frac{\textrm{d} ^{p}}{\textrm{d} t ^{p}}\varvec{\Omega }\right) . \end{aligned}$$
(6.3)

Subscript \(l-p\) in operators \(\mathcal {L}_{l-p}\), \(\mathcal {M}_{l-p}\), \(\mathcal {N}_{l-p}\) and \(\mathcal {G}_{l-p}\) denotes \((l-p)\)th order time derivative of the coefficients in operators \(\mathcal {L}\), \(\mathcal {M}\), \(\mathcal {N}\) and \(\mathcal {G}\). As for \(l=1\), to show that described problem has a unique solution \((\textbf{U}_l^{*},P_l^{*},\textbf{A}_l^{*},\varvec{\Omega }_l^{*})\) such that

$$\begin{aligned} \begin{aligned}&\textbf{U}_l^{*}\in H^1(0,T;L^2(\Omega _F))\cap L^2(0,T;H^{2}(\Omega _F)), \\&P_l^{*}\in L^2(0,T;{H^{1}(\Omega _F)\,/\,{{\mathbb {R}}}}), \\&\textbf{A}_l^{*},\varvec{\Omega }_l^{*}\in H^1(0,T) \end{aligned} \end{aligned}$$
(6.4)

it is sufficient to show that

$$\begin{aligned} \begin{aligned}&\mathcal {R} = tF_l(\textbf{U},P)+\partial _t^l\textbf{U}, \quad \mathcal {R}_{\textbf{a}} = tG_l(\textbf{A})+\frac{\textrm{d} ^{l}}{\textrm{d} t ^{l}}\textbf{A}, \quad \mathcal {R}_{\varvec{\omega }} = tH_l(\varvec{\Omega })+\frac{\textrm{d} ^{l}}{\textrm{d} t ^{l}}\varvec{\Omega }. \end{aligned} \end{aligned}$$

satisfy

$$\begin{aligned} \begin{aligned}&\mathcal {R}\in L^2(0,T;L^2(\Omega _{F})) \quad \mathcal {R}_{\textbf{a}}\in L^2(0,T), \quad \mathcal {R}_{\varvec{\omega }} \in L^2(0,T). \end{aligned} \end{aligned}$$

All the terms can be estimated as in Sect. 4, so by Proposition 3.1 there exists a unique strong solution \((\textbf{U}_l^{*},P_l^{*},\textbf{A}_l^{*},\varvec{\Omega }_l^{*})\) of (3.1) with the right hand side (6.1) satisfying (6.4). Again, we have to prove that the obtained solution equals \( \left( t\partial _t^l\textbf{U},t\partial _t^l P,t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A},t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }\right) \).

Lemma 6.1

Let \((\textbf{U},P,\textbf{A},\varvec{\Omega })\) be a unique strong solution for (2.4), and \((\textbf{U}_l^{*},P_l^{*},\textbf{A}_l^{*},\varvec{\Omega }_l^{*})\) be a unique strong solution for (3.1) with the right hand side (6.1) satisfying (6.4). Suppose that

$$\begin{aligned} \begin{aligned}&\textbf{U}, \widetilde{\textbf{U}}\in W^{l-1,p}(\varepsilon ,T;W^{2,p}(\Omega _F))\cap W^{l,p}(\varepsilon ,T;L^{p}(\Omega _F)), \\&P, \widetilde{P}\in W^{l-1,p}(\varepsilon ,T;{W^{1,p}(\Omega _F)\,/\,{{\mathbb {R}}}}), \\&\textbf{A},\varvec{\Omega }, \widetilde{\textbf{A}}, \widetilde{\varvec{\Omega }}\in W^{l,p}(\varepsilon ,T)\cap W^{1,\infty }(\varepsilon ,T) \end{aligned} \end{aligned}$$
(6.5)

hold for some \(l\in {{\mathbb {N}}}\) and for all \(\varepsilon >0\) and all \(1\le p<\infty \). Then

$$\begin{aligned} (\textbf{U}_{l}^{*},P_{l}^{*},\textbf{A}_{l}^{*},\varvec{\Omega }_{l}^{*}) = \left( t\partial _t^l\textbf{U},t\partial _t^l P,t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A},t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }\right) . \end{aligned}$$
(6.6)

1.2 Proof of Lemma 6.1

Let \((\textbf{U},P,\textbf{A},\varvec{\Omega })\) be a unique strong solution for (2.4) satisfying (6.5) and let \((\textbf{U}_{l}^{*},P_{l}^{*},\textbf{A}_{l}^{*},\varvec{\Omega }_{l}^{*})\) be a unique strong solution for (3.1) with the right hand side (6.1). We want to show (6.6). Since we have already shown that the statement is valid for \(l=1\) in Sect. 4.1, we can suppose that \(l\ge 2\).

We use Galerkin approximations \((\textbf{U}^m,\textbf{A}^m,\varvec{\Omega }^m)\), as in Sect. 4.1, and assume that

$$\begin{aligned} \Vert \textbf{U}^m\Vert _{W^{l-1,\infty }(\varepsilon ,T;L^2(\Omega ))} + \Vert \textbf{U}^m\Vert _{H^{l-1}(\varepsilon ,T;H^1(\Omega ))} <M, \end{aligned}$$

for some constant \(M>0\). This assumption comes from the previous step of the induction.

We want to show that

$$\begin{aligned} \Vert \partial _t^l\textbf{U}^m\Vert _{L^{\infty }(\varepsilon ,T;L^2(\Omega ))} + \Vert \partial _t^l\textbf{U}^m\Vert _{L^{2}(\varepsilon ,T;H^1(\Omega ))} <M. \end{aligned}$$

for some constant \(M>0\), which implies that

$$\begin{aligned} \partial _t^l\widetilde{\textbf{U}},\partial _t^l{\textbf{U}}\in L^{\infty }(\varepsilon ,T;L^2(\Omega ))\cap L^{2}(\varepsilon ,T;H^1(\Omega )). \end{aligned}$$

By (4.16) approximation \((\textbf{U}^m,\textbf{A}^m,\varvec{\Omega }^m)\) satisfies

$$\begin{aligned} \begin{aligned}&\int _{\Omega }\mathbb {G}\partial _{t}{\textbf{U}^m} \cdot {\varvec{\Psi }}_i \, \textrm{d} \textbf{y}+ \left\langle \mathbb {G}\mathcal {F}\textbf{U}^m,\varvec{\Psi }_i\right\rangle - G(\textbf{A}^m)\cdot \varvec{\Psi }_i^{\textbf{a}} - H(\varvec{\Omega }^m)\cdot \varvec{\Psi }_i^{\varvec{\omega }} = 0 \end{aligned} \end{aligned}$$

for \(i=1,\ldots m\). We differentiate the equation in time l times

$$\begin{aligned}{} & {} \int _{\Omega }\partial _t^l(\mathbb {G}\partial _{t}{\textbf{U}^m}) \cdot \varvec{\Psi }_i \, \textrm{d} \textbf{y}- \left\langle \mathbb {\mathbb {G}}\mathcal {F}(\partial _t^l\textbf{U}^m),\varvec{\Psi }_i\right\rangle - \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left\langle \partial _t^k(\mathbb {G}\mathcal {F})(\partial _t^{l-k}\textbf{U}^m),\varvec{\Psi }_i\right\rangle \\{} & {} \qquad - G\left( \frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}^m\right) \cdot \varvec{\Psi }_i^{\textbf{a}} - H\left( \frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }^m\right) \cdot \varvec{\Psi }_i^{\varvec{\omega }} - \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left( G_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}\textbf{A}^m\right) \cdot \varvec{\Psi }_i^{\textbf{a}}\right. \\{} & {} \qquad \left. + H_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}\varvec{\Omega }^m\right) \cdot \varvec{\Psi }_i^{\varvec{\omega }} \right) \\{} & {} \quad =0, \end{aligned}$$

multiply by \(\frac{\textrm{d} ^l}{\textrm{d} t ^l}c_{im}\) and sum over i form 1 to m to obtain

$$\begin{aligned}{} & {} \int _{\Omega }\partial _t^l(\mathbb {G}\partial _{t}{\textbf{U}^m}) \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}- \left\langle \mathbb {\mathbb {G}}\mathcal {F}(\partial _t^l\textbf{U}^m),\partial _t^l\textbf{U}^m\right\rangle \\{} & {} \quad - \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left\langle \partial _t^k(\mathbb {G}\mathcal {F})(\partial _t^{l-k}\textbf{U}^m),\partial _t^l\textbf{U}^m\right\rangle \\{} & {} \quad - G\left( \frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}^m\right) \cdot \frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}^m - H\left( \frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }^m\right) \cdot \frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }^m \\{} & {} \quad - \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left( G_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}\textbf{A}^m\right) \cdot \frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}^m + H_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}\varvec{\Omega }^m\right) \cdot \frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }^m \right) =0. \end{aligned}$$

Then we integrate the equation on \([t_1,t_2]\subset (0,T]\) and, in the same way as in Sect. 4.1.1, estimate

$$\begin{aligned}&\int _{\Omega }\partial _t^l(\mathbb {G}\partial _{t}{\textbf{U}^m}) \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}\\&\quad = \int _{\Omega }\mathbb {G}\partial _{t}^{l+1}{\textbf{U}^m} \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}+ \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{\Omega }\partial _t^k\mathbb {G}\,\partial _{t}^{l-k+1}{\textbf{U}^m} \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}\\&\quad = \frac{1}{2}\frac{\textrm{d} }{\textrm{d} t }\int _{\Omega }\mathbb {G}\partial _{t}^{l}{\textbf{U}^m} \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}-\int _{\Omega }\partial _{t}\mathbb {G}\,\partial _{t}^{l}{\textbf{U}^m} \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}\\&\qquad + \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{\Omega }\partial _t^k\mathbb {G}\,\partial _{t}^{l-k+1}{\textbf{U}^m} \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}\\&\qquad \left| -\int _{t_1}^{t_2}\int _{\Omega }\partial _{t}\mathbb {G}\,\partial _{t}^{l}{\textbf{U}^m} \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}\textrm{d} \tau + \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{t_1}^{t_2}\int _{\Omega }\partial _t^k\mathbb {G}\,\partial _{t}^{l-k+1}{\textbf{U}^m} \cdot \partial _{t}^l{\textbf{U}^m} \, \textrm{d} \textbf{y}\textrm{d} \tau \right| \\&\quad \le C\Vert \textbf{U}^m\Vert _{H^l(t_1,t_2;L^2(\Omega ))}^2 \\&\qquad \left| \int _{t_1}^{t_2}\left\langle \mathbb {G}\mathcal {F}\left( \partial _t^l\textbf{U}^m\right) ,\partial _{t}^l{\textbf{U}^m}\right\rangle \textrm{d} \tau - \int _{t_1}^{t_2}\int _{\Omega _{F}}2|{{\mathbb {D}}}\partial _t^l\textbf{U}^m|^2\,\textrm{d} \textbf{y}\textrm{d} \tau \right| \\&\quad \le \left( \Vert g_{ik}g^{il}-\delta _{ik}\delta _{il}\Vert _{L^{\infty }(0,T;L^{\infty }(\Omega ))} +\mu \right) \int _{t_1}^{t_2}\int _{\Omega _{F}}|\nabla \partial _t^l\textbf{U}^m|^2\,\textrm{d} \textbf{y}\textrm{d} \tau \\&\qquad + C\int _{t_1}^{t_2}\Vert \partial _t^l\textbf{U}^m\Vert _{L^2(\Omega )}^2\,\textrm{d} \tau \end{aligned}$$

The only difference from Sect. 4.1.1 is in the following estimate

$$\begin{aligned}&\left| \int _{t_1}^{t_2}\sum _{k=1}^l\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{\Omega _F} \partial _t^k(\mathbb {G}\mathcal {M})(\textbf{U}^m),\partial _t^l\textbf{U}^m\,\textrm{d} \textbf{y}\textrm{d} \tau \right| \\&\quad \le {\int _{t_1}^{t_2}}\Vert \partial _t^l\textbf{U}^m\Vert _{L^2(\Omega )}^2\,\textrm{d} \tau + C\left( \Vert \widetilde{\textbf{A}}\Vert _{W^{l,4}(t_1,t_2)} \right. \\&\qquad \left. + \Vert \widetilde{\varvec{\Omega }}\Vert _{W^{l,4}(t_1,t_2)} \right) ^2 \Vert \textbf{U}^m\Vert _{W^{l-2,4}(t_1,t_2;H^{1}(\Omega _F))}^2 \\&\qquad + C\left( \Vert \widetilde{\textbf{A}}\Vert _{W^{l-1,\infty }(t_1,t_2)} + \Vert \widetilde{\varvec{\Omega }}\Vert _{W^{l-1,\infty }(t_1,t_2)} \right) ^2 \Vert \textbf{U}^m\Vert _{H^{l-1}(t_1,t_2;H^{1}(\Omega _F))}^2 \\&\quad \le {\int _{t_1}^{t_2}}\Vert \partial _t^l\textbf{U}^m\Vert _{L^2(\Omega )}^2\,\textrm{d} \tau + C \Vert \textbf{U}^m\Vert _{H^{l-1}(t_1,t_2;H^{1}(\Omega _F))}^2. \end{aligned}$$

The last inequality follows from the fact that \( \widetilde{\textbf{A}}, \widetilde{\varvec{\Omega }}\in W^{l,4}(\varepsilon ,T)\cap W^{1,\infty }(\varepsilon ,T) \) and embedding \(W^{l-2,4}(t_1,t_2;H^{1}(\Omega _F))\hookrightarrow H^{l-1}(t_1,t_2;H^{1}(\Omega _F))\) for \(l\ge 2\). Therefore, we get

$$\begin{aligned}&\left| \int _{t_1}^{t_2}\left\langle \partial _t^k(\mathbb {G}\mathcal {F})(\partial _t^{l-k}\textbf{U}^m),\partial _t^l\textbf{U}^m\right\rangle \,\textrm{d} \textbf{y}\textrm{d} \tau \right| \\&\quad \le \mu \int _{t_1}^{t_2}\int _{\Omega _{F}}|\nabla \partial _t^l\textbf{U}^m|^2\,\textrm{d} \textbf{y}\textrm{d} \tau + C\int _{t_1}^{t_2}\Vert \partial _t^l\textbf{U}^m\Vert _{L^2(\Omega )}^2\,\textrm{d} \tau \\&\qquad + C \Vert \textbf{U}^m\Vert _{H^{l-1}(t_1,t_2;H^{1}(\Omega _F))}^2 \end{aligned}$$

All together, we get

$$\begin{aligned}&\Vert \partial _t^l\textbf{U}^m\Vert _{L^2(\Omega )}(t_2) + \Vert {{\mathbb {D}}}\partial _t\textbf{U}^m\Vert _{L^2(t_1,t_2;L^2(\Omega _F))}^2 \\&\quad \le C\Vert \partial _t^l\textbf{U}^m\Vert _{L^2(\Omega )}(t_1) + C\int _{t_1}^{t_2}\Vert \partial _t^l\textbf{U}^m\Vert _{L^2(\Omega )}^2\textrm{d} t \\&\qquad + C\left( \Vert g_{ik}g^{il}-\delta _{ik}\delta _{il}\Vert _{L^{\infty }(0,T;L^{\infty }(\Omega ))} +\mu \right) \int _{t_1}^{t_2}\Vert \nabla \partial _t^l\textbf{U}^m\Vert _{L^2(\Omega _F)}^2\,\textrm{d} \tau \\&\qquad + C \Vert \textbf{U}^m\Vert _{H^{l-1}(t_1,t_2; H^1(\Omega _F))}^2, \end{aligned}$$

for arbitrary \(\mu >0\), where \(\Vert g_{ik}g^{il}-\delta _{ik}\delta _{il}\Vert _{L^{\infty }(0,T;L^{\infty }(\Omega ))}\) is small for small T. Now, we take sufficiently small T, integrate the inequality on \(t_1\in (\varepsilon ,t_2)\) and by Gronwall’s Lemma we find

$$\begin{aligned}&\Vert \partial _t^l\textbf{U}^m(t)\Vert _{L^2(\Omega )}^2 + \int _{\varepsilon }^{t}\Vert {{\mathbb {D}}}\partial _t^l\textbf{U}^m\Vert _{L^2(\Omega _F)}^2\,\textrm{d} \tau \le M, \end{aligned}$$

where constant \(M>0\) depends on the norms \(\Vert \widetilde{\textbf{U}}\Vert _{H^{l-1}(\varepsilon ,T;H^1(\Omega ))}\), \(\Vert \textbf{U}^m\Vert _{H^{l-1}(0,T;H^1(\Omega ))}\), \(\Vert \widetilde{\textbf{A}}\Vert _{W^{1,\infty }(\varepsilon ,T)}\), \(\Vert \widetilde{\textbf{A}}\Vert _{W^{l,4}(\varepsilon ,T)}\), \(\Vert \widetilde{\varvec{\Omega }}\Vert _{W^{1,\infty }(\varepsilon ,T)}\), \(\Vert \widetilde{\varvec{\Omega }}\Vert _{W^{l,4}(\varepsilon ,T)}\) and T. Finally, in the limit we get that \(\partial _t^l\textbf{U}\in L^2(\varepsilon ,T;H^1(\Omega ))\cap L^{\infty }(\varepsilon ,T;L^2(\Omega ))\), for all \(\varepsilon >0\).

1.2.1 Uniqueness

In previous section, we showed that \(\partial _t^l\textbf{U}\in L^2(\varepsilon ,T;H^1(\Omega ))\cap L^{\infty }(\varepsilon ,T;L^2(\Omega ))\), for all \(\varepsilon >0\). Now we are able to show that \(\textbf{U}_{l}^{*}=t\partial _t^l\textbf{U}\). We know that \((\textbf{U}, P)\) satisfies

$$\begin{aligned}{} & {} \int _{\Omega _F}\partial _{t}^k\mathbb {G}\, \partial _{t}^{l-k+1}\textbf{U}\cdot \varvec{\psi }\, \textrm{d} \textbf{y}-\int _{\Omega _F} \partial _{t}^k\mathbb {G}\, \partial _{t}^{l-k}\left( \mathcal {F}(\textbf{U})\right) \cdot \varvec{\psi }\, \textrm{d} \textbf{y}\nonumber \\{} & {} \quad + \int _{\Omega _F}\partial _{t}^k\mathbb {G}\,\partial _{t}^{l-k}(\mathcal {G}(P)) \cdot \varvec{\psi }\, \textrm{d} \textbf{y}= 0, \quad 1\le k \le l, \end{aligned}$$
(6.7)

for all \(\varvec{\psi }\in V(0)\), and \((\textbf{U}_{l}^{*}, P_{l}^{*},\textbf{A}_{l}^{*},\varvec{\Omega }_{l}^{*})\) satisfies

$$\begin{aligned}{} & {} \int _{\Omega _F}\mathbb {G}\partial _{t}{\textbf{U}_{l}^{*}} \cdot \varvec{\psi }\, \textrm{d} \textbf{y}+ \frac{\textrm{d} }{\textrm{d} t }\textbf{A}_{l}^{*}\cdot \varvec{\psi }_{\textbf{a}} + \frac{\textrm{d} }{\textrm{d} t }(\mathcal {J}{\varvec{\Omega }_{l}^{*}})\cdot \varvec{\psi }_{\varvec{\omega }} \nonumber \\{} & {} \quad + \left\langle \mathbb {G}\mathcal {F}(\textbf{U}_{l}^{*}),\varvec{\psi }\right\rangle + t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left( \left\langle \mathbb {G}\mathcal {F}_k (\partial _t^{l-k}\textbf{U}),\varvec{\psi }\right\rangle +\int _{\Omega _F}\mathbb {G}\mathcal {G}_l( \partial _t^{l-k}P) \cdot \varvec{\psi }\, \textrm{d} \textbf{y}\right) \nonumber \\{} & {} \quad - G(\textbf{A}_{l}^{*})\cdot \varvec{\psi }_{\textbf{a}} - H(\varvec{\Omega }_{l}^{*})\cdot \varvec{\psi }_{\varvec{\omega }} - t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left( G_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}\textbf{A}\right) \cdot \varvec{\psi }_{\textbf{a}} + H_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}\varvec{\Omega }\right) \cdot \varvec{\psi }_{\varvec{\omega }} \right) \nonumber \\{} & {} \quad -\int _{\Omega _F}\mathbb {G}\partial _{t}^l{\textbf{U}} \cdot \varvec{\psi }- \left( \frac{\textrm{d} ^{l}}{\textrm{d} t ^{l}}\textbf{A}\right) \cdot \varvec{\psi }_{\textbf{a}} - \left( \frac{\textrm{d} ^{l}}{\textrm{d} t ^{l}}\varvec{\Omega }\right) \cdot \varvec{\psi }_{\varvec{\omega }} =0, \end{aligned}$$
(6.8)

where

$$\begin{aligned} \left\langle \mathbb {G}\,\mathcal {F}_k(\partial _{t}^{l-k}\textbf{U}),\varvec{\psi }\right\rangle =- \int _{\Omega _F}\mathbb {G}\,\mathcal {F}_k(\partial _{t}^{l-k}\textbf{U}) \cdot \varvec{\psi }\, \textrm{d} \textbf{y},\quad 1\le k\le l. \end{aligned}$$

For \((\varvec{\psi },\varvec{\psi }_{\textbf{a}},\varvec{\psi }_{\varvec{\omega }})=h(t)({\varvec{\Psi }}_j,{\varvec{\Psi }}_j^{\textbf{a}},{\varvec{\Psi }}_j^{\varvec{\omega }})\) we have

$$\begin{aligned}{} & {} \int _{\Omega _F}\mathbb {G}\partial _{t}{\partial _t^l\textbf{U}^m} \cdot \varvec{\psi }\, \textrm{d} \textbf{y}+ \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{\Omega _F}\partial _t^k\mathbb {G}\,{\partial _t^{l-k+1}\textbf{U}^m} \cdot \varvec{\psi }\, \textrm{d} \textbf{y}\nonumber \\{} & {} \quad + \frac{\textrm{d} ^l}{\textrm{d} t ^l}\mathcal {J}\left( \frac{\textrm{d} }{\textrm{d} t }\varvec{\Omega }^m\right) \cdot \varvec{\psi }_{\varvec{\omega }} + \frac{\textrm{d} ^{l+1}}{\textrm{d} t ^{l+1}}\textbf{A}^m\cdot \varvec{\psi }_{\textbf{a}} + \left\langle \mathbb {\mathbb {G}}\mathcal {F}(\partial _t^l\textbf{U}^m),\varvec{\psi }\right\rangle \nonumber \\{} & {} \quad + \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left\langle \mathbb {G}\mathcal {F}_k(\partial _t^{l-k}\textbf{U}^m),\varvec{\psi }\right\rangle + \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left\langle \partial _t^k \mathbb {G}\,\partial _t^{l-k}\left( \mathcal {F}(\textbf{U}^m)\right) ,\varvec{\psi }\right\rangle \nonumber \\{} & {} \quad - G\left( \frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}^m\right) \cdot \varvec{\psi }_{\textbf{a}} - H\left( \frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }^m\right) \cdot \varvec{\psi }_{\varvec{\omega }} - \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left( G_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}\textbf{A}^m\right) \cdot \varvec{\psi }_{\textbf{a}} + H_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}\varvec{\Omega }^m\right) \cdot \varvec{\psi }_{\varvec{\omega }} \right) \nonumber \\{} & {} \quad =0, \end{aligned}$$
(6.9)

where

$$\begin{aligned} \left\langle \partial _t^k\mathbb {G}\,\partial _t^{l-k}\left( \mathcal {F}(\textbf{U})\right) ,\varvec{\psi }\right\rangle =- \int _{\Omega _F}\partial _t^k\mathbb {G}\,\partial _t^{l-k}\left( \mathcal {F}(\textbf{U})\right) \cdot \varvec{\psi }\, \textrm{d} \textbf{y},\quad 1\le k\le l. \end{aligned}$$

We multiply the above equation by t and subtract from the previous one with

$$\begin{aligned} (\widehat{\textbf{U}}^m,\widehat{\textbf{A}}^m,\widehat{\varvec{\Omega }}^m) = \left( \textbf{U}_{l}^{*}-t\partial _t^l\textbf{U}^m,\, \textbf{A}_{l}^{*}-t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}^m,\, \varvec{\Omega }_{l}^{*}-t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }^m \right) \end{aligned}$$

Then, by using (6.7), we obtain

$$\begin{aligned} \begin{aligned}&\int _{\Omega _F}\mathbb {G}\partial _{t}\widehat{\textbf{U}}^m \cdot \varvec{\psi }\, \textrm{d} \textbf{y}+ t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{\Omega _F}\partial _t^k\mathbb {G}\,{\partial _t^{l-k+1}({\textbf{U}}-{\textbf{U}^m})} \cdot \varvec{\psi }\, \textrm{d} \textbf{y}\\&\quad + \frac{\textrm{d} }{\textrm{d} t }\widehat{\textbf{A}}^m\cdot \varvec{\psi }_{\textbf{a}} + \frac{\textrm{d} }{\textrm{d} t }(\mathcal {J}{\widehat{\varvec{\Omega }}^m})\cdot \varvec{\psi }_{\varvec{\omega }} \\&\quad - \left\langle \mathbb {G}\mathcal {F}(\widehat{\textbf{U}}^m),\varvec{\psi }\right\rangle - t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left( \left\langle \mathbb {G}\mathcal {F}_k (\partial _t^{l-k}({\textbf{U}}-{\textbf{U}^m})),\varvec{\psi }\right\rangle \right. \\&\quad \left. + \left\langle \partial _t^k \mathbb {G}\,\partial _t^{l-k}\left( \mathcal {F}({\textbf{U}}-{\textbf{U}^m})\right) ,\varvec{\psi }\right\rangle \right) \\&\quad { - t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{\Omega _F}\mathbb {G}\mathcal {G}_l (\partial _t^{l-k}P) \cdot \varvec{\psi }\, \textrm{d} \textbf{y}} -t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) { \int _{\Omega _F}\partial _{t}^k\mathbb {G}\,\partial _{t}^{l-k}(\mathcal {G}(P)) \cdot \varvec{\psi }\, \textrm{d} \textbf{y}} \\&\quad - G(\widehat{\textbf{A}}^m)\cdot \varvec{\psi }_{\textbf{a}} - H(\widehat{\varvec{\Omega }}^m)\cdot \varvec{\psi }_{\varvec{\omega }} \\&\quad - {t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \left( G_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}(\textbf{A}-\textbf{A}^m)\right) \cdot \varvec{\psi }_{\textbf{a}} + H_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}(\varvec{\Omega }-\varvec{\Omega }^m)\right) \cdot \varvec{\psi }_{\varvec{\omega }} \right) } \\&\quad -\int _{\Omega _F}\mathbb {G}\partial _{t}^l({\textbf{U}}-{\textbf{U}^m}) \cdot \varvec{\psi }\,\textrm{d} \textbf{y}\\&\quad - \left( \frac{\textrm{d} ^{l}}{\textrm{d} t ^{l}}(\textbf{A}-\textbf{A}^m)\right) \cdot \varvec{\psi }_{\textbf{a}} - \left( \frac{\textrm{d} ^{l}}{\textrm{d} t ^{l}}(\varvec{\Omega }-\varvec{\Omega }^m)\right) \cdot \varvec{\psi }_{\varvec{\omega }} =0 \end{aligned} \end{aligned}$$

It can be shown that the terms with the pressure cancels, i.e. it holds

$$\begin{aligned} \sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \mathbb {G}\mathcal {G}_l (\partial _t^{l-k}P) +\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \partial _{t}^k\mathbb {G}\,\partial _{t}^{l-k}(\mathcal {G}(P)) = 0, \end{aligned}$$
(6.10)

and after integrating above equation on (0, t), we get

$$\begin{aligned}&\int _{\Omega _F}\mathbb {G}(t)\widehat{\textbf{U}}^m(t) \cdot \varvec{\psi }(t) \, \textrm{d} \textbf{y}-\int _{0}^{t}\int _{\Omega _F}\mathbb {G}\widehat{\textbf{U}}^m \cdot \partial _{t}\varvec{\psi }\, \textrm{d} \textbf{y}\textrm{d} \tau -\int _{0}^{t}\int _{\Omega _F}\partial _t\mathbb {G}\widehat{\textbf{U}}^m \cdot \partial _{t}\varvec{\psi }\, \textrm{d} \textbf{y}\textrm{d} \tau \\&\qquad + t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{0}^{t}\int _{\Omega _F}\partial _t^k\mathbb {G}\,{\partial _t^{l-k+1}(\textbf{U}-\textbf{U}^m)} \cdot \varvec{\psi }\, \textrm{d} \textbf{y}\,\textrm{d} \tau \\&\qquad +\widehat{\textbf{A}}^m(t)\cdot \varvec{\psi }_{\textbf{a}}(t) + \mathcal {J}{\widehat{\varvec{\Omega }}^m}(t)\cdot \varvec{\psi }_{\varvec{\omega }}(t) - \int _{0}^{t} \left( \widehat{\textbf{A}}^m\cdot \frac{\textrm{d} }{\textrm{d} t }\varvec{\psi }_{\textbf{a}} + \mathcal {J}{\widehat{\varvec{\Omega }}^m}\cdot \frac{\textrm{d} }{\textrm{d} t }\varvec{\psi }_{\varvec{\omega }} \right) \,\textrm{d} \tau \\&\qquad - \int _{0}^{t} \left\langle \mathbb {G}\mathcal {F}(\widehat{\textbf{U}}^m),\varvec{\psi }\right\rangle \,\textrm{d} \tau - t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{0}^{t}\left( \left\langle \mathbb {G}\mathcal {F}_k (\partial _t^{l-k}(\textbf{U}-\textbf{U}^m)),\varvec{\psi }\right\rangle + \left\langle \partial _t^l \mathbb {G}\,\partial _t^{l-k}\mathcal {F}(\textbf{U}-\textbf{U}^m),\varvec{\psi }\right\rangle \right) \,\textrm{d} \tau \\&\qquad - \int _{0}^{t}\left( G(\widehat{\textbf{A}}^m)\cdot \varvec{\psi }_{\textbf{a}} + H(\widehat{\varvec{\Omega }}^m)\cdot \varvec{\psi }_{\varvec{\omega }} \right) \,\textrm{d} \tau \\&\qquad - {t\sum _{k=1}^{l}\left( {\begin{array}{c}l\\ k\end{array}}\right) \int _{0}^{t}\left( G_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}(\textbf{A}-\textbf{A}^m)\right) \cdot \varvec{\psi }_{\textbf{a}} + H_k\left( \frac{\textrm{d} ^{l-k}}{\textrm{d} t ^{l-k}}(\varvec{\Omega }-\varvec{\Omega }^m)\right) \cdot \varvec{\psi }_{\varvec{\omega }} \right) \,\textrm{d} \tau } \\&\qquad -\int _{0}^{t}\int _{\Omega _F}\mathbb {G}\partial _{t}^l({\textbf{U}}-{\textbf{U}^m}) \cdot \varvec{\psi }\,\textrm{d} \textbf{y}\,\textrm{d} \tau - \int _{0}^{t}\left( \frac{\textrm{d} ^{l}}{\textrm{d} t ^{l}}(\textbf{A}-\textbf{A}^m)\right) \cdot \varvec{\psi }_{\textbf{a}}\,\textrm{d} \tau \\&\qquad - \int _{0}^{t}\left( \frac{\textrm{d} ^{l}}{\textrm{d} t ^{l}}(\varvec{\Omega }-\varvec{\Omega }^m)\right) \cdot \varvec{\psi }_{\varvec{\omega }}\,\textrm{d} \tau =0. \end{aligned}$$

We let \(m\rightarrow \infty \) and obtain the equation

$$\begin{aligned} \begin{aligned}&\int _{\Omega _F}\mathbb {G}(t)\widehat{\textbf{U}}(t) \cdot \varvec{\psi }(t) \, \textrm{d} \textbf{y}-\int _{0}^{t}\int _{\Omega _F}\widehat{\textbf{U}} \cdot \partial _{t}(\mathbb {G}\varvec{\psi }) \, \textrm{d} \textbf{y}\textrm{d} \tau \\&\qquad +\widehat{\textbf{A}}(t)\cdot \varvec{\psi }_{\textbf{a}}(t) + \mathcal {J}{\widehat{\varvec{\Omega }}}(t)\cdot \varvec{\psi }_{\varvec{\omega }}(t) - \int _{0}^{t} \left( \widehat{\textbf{A}}\cdot \frac{\textrm{d} }{\textrm{d} t }\varvec{\psi }_{\textbf{a}} + \mathcal {J}{\widehat{\varvec{\Omega }}}\cdot \frac{\textrm{d} }{\textrm{d} t }\varvec{\psi }_{\varvec{\omega }} \right) \,\textrm{d} \tau \\&\qquad - \int _{0}^{t} \left\langle \mathbb {G}\mathcal {F}(\widehat{\textbf{U}}),\varvec{\psi }\right\rangle \,\textrm{d} \tau - \int _{0}^{t}\left( G(\widehat{\textbf{A}})\cdot \varvec{\psi }_{\textbf{a}} + H(\widehat{\varvec{\Omega }})\cdot \varvec{\psi }_{\varvec{\omega }} \right) \,\textrm{d} \tau =0 \end{aligned} \end{aligned}$$

where

$$\begin{aligned} (\widehat{\textbf{U}},\widehat{\textbf{A}},\widehat{\varvec{\Omega }}) = \left( \textbf{U}_{l}^{*}-t\partial ^l\textbf{U},\textbf{A}_{l}^{*}-\frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A},\varvec{\Omega }_{l}^{*}-t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }\right) . \end{aligned}$$

By the linearity and the density, the above equality holds for all \((\varvec{\psi },\varvec{\psi }_{\textbf{a}},\varvec{\psi }_{\varvec{\omega }})\in \mathbb {V}\). Then we can substitute

$$\begin{aligned} (\varvec{\psi },\varvec{\psi }_{\textbf{a}},\varvec{\psi }_{\varvec{\omega }}) = (\widehat{\textbf{U}},\widehat{\textbf{A}},\widehat{\varvec{\Omega }}) \end{aligned}$$

and get the equality

$$\begin{aligned}{} & {} \frac{1}{2} \left\| (\nabla \textbf{X}\widehat{\textbf{U}})(t) \right\| _{L^2(\Omega )}^2 -\int _{0}^t\int _{\Omega }\nabla \textbf{X}^T\partial _t\nabla \textbf{X}\widehat{\textbf{U}}\cdot \widehat{\textbf{U}}\,\textrm{d} \textbf{y}\textrm{d} \tau \\{} & {} \quad - \int _{0}^{t} \left\langle \mathbb {G}\mathcal {F}(\widehat{\textbf{U}}),\widehat{\textbf{U}}\right\rangle \,\textrm{d} \tau - \int _{0}^{t}\left( G(\widehat{\textbf{A}})\cdot \widehat{\textbf{A}} + H(\widehat{\varvec{\Omega }})\cdot \widehat{\varvec{\Omega }} \right) \,\textrm{d} \tau =0. \end{aligned}$$

Now, as in Sect. 4, we can get the estimate

$$\begin{aligned}{} & {} \left\| \widehat{\textbf{U}}(t) \right\| _{L^2(\Omega )}^2 + C_1\int _{0}^{t}\int _{\Omega _F} |{{\mathbb {D}}}\widehat{\textbf{U}}|^2 \, \textrm{d} \textbf{y}\textrm{d} \tau \le \int _{0}^{t}C\left\| \widehat{\textbf{U}}(\tau ) \right\| _{L^2(\Omega )}^2 \textrm{d} \tau \\{} & {} \quad +\mu \int _{0}^{t}\int _{\Omega _F} |{{\mathbb {D}}}\widehat{\textbf{U}}|^2 \, \textrm{d} \textbf{y}\textrm{d} \tau \end{aligned}$$

for all \(\mu >0\) and for sufficiently small \(\mu \) we get

$$\begin{aligned} \begin{aligned}&\left\| \widehat{\textbf{U}}(t) \right\| _{L^2(\Omega )}^2 \le \int _{0}^{t}C\left\| \widehat{\textbf{U}}(\tau ) \right\| _{L^2(\Omega )}^2 \textrm{d} \tau . \end{aligned} \end{aligned}$$

Finally, Gronwall’s Lemma implies \(\widehat{\textbf{U}}=0\) which means that \(\textbf{U}_{l}^{*}=t\partial _t^l\textbf{U}\). Then the equations for \(\textbf{U}\) and \(\textbf{U}_l^{*}\) give \(\nabla P_l^{*}=t\nabla \partial _t P\), and since \(\textbf{U}_l^{*}=\textbf{A}_l^{*}+ \varvec{\Omega }_l^{*}\times \textbf{y}\) and \(\partial _t\textbf{U}=\frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}+ \frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }\times \textbf{y}\) on \(\overline{S_0}\), it follows that \(\textbf{A}_l^{*}=t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\textbf{A}\) and \(\varvec{\Omega }_l^{*}=t\frac{\textrm{d} ^l}{\textrm{d} t ^l}\varvec{\Omega }\).

Notation

Label

Description

Definition/1st appearance

\((\widetilde{\textbf{u}}, \widetilde{p},\widetilde{\varvec{\omega }},\widetilde{\textbf{a}})\)

Solution for the original nonlinear problem (1.6) on physical domain

Section 2.1

\((\textbf{u}, p,\varvec{\omega },\textbf{a})\)

Solution for the linear problem (2.1) on the physical domain

Section 2.1

\((\widetilde{\textbf{U}}, \widetilde{P},\widetilde{\varvec{\Omega }},\widetilde{\textbf{A}})\)

Solution for the nonlinear problem on the cylindrical domain

Section 2.2, Eq. (2.3)

\((\textbf{U}, P,\varvec{\Omega },\textbf{A})\)

Solution for the linear problem (2.4) on the cylindrical domain

Section 2.2, Eq. (2.3)

\((\varvec{\varphi }, \varvec{\varphi }_{\varvec{\omega }}, \varvec{\varphi }_{\textbf{a}})\)

Test function on the physical domain

Definition 1.1

\((\varvec{\psi }, \varvec{\psi }_{\varvec{\omega }}, \varvec{\psi }_{\textbf{a}})\)

Test function on the cylindrical domain

Section 4.1

\(\textbf{X}(t,\textbf{y})\)

Changes of variables

Section 2.2

\(\textbf{Y}(t,\textbf{x})\)

Changes of variables

Section 2.2

\(F(\textbf{U},P)\), \(G(\textbf{A}), H(\varvec{\Omega })\)

Right-hand side of the linear problem (2.4) on the cylindrical domain,

Equations (2.5) and (2.6)

 

\(F(\textbf{U},P) = (\mathcal {L}-\Delta )\textbf{U}-\mathcal {M}\textbf{U}-\mathcal {N}\textbf{U}-(\mathcal {G}-\nabla )P\)

 

\(\mathcal {L}\textbf{U}\)

The transformed Laplace operator

Equation (2.7)

\(\mathcal {M}\textbf{U}\)

The transformation of time derivative and gradient

Equation (2.9)

\(\mathcal {N}\textbf{U}\)

The transformation of the convection term

Equation (2.8)

\(\mathcal {G}P\)

\(\mathcal {G}P=\nabla \textbf{Y}\nabla \textbf{Y}^T\nabla P\), the transformation of the gradient of the pressure

Equation (2.10)

\(\mathcal {F}\textbf{U}\)

\(\mathcal {F}\textbf{U}= \mathcal {L}\textbf{U}-\mathcal {M}\textbf{U}-\mathcal {N}\textbf{U}-\mathcal {G}P\)

Equation (4.12)

\(({\textbf{U}}^{*}, {P}^{*},{\varvec{\Omega }}^{*},{\textbf{A}}^{*})\)

The fixed point, the solution for the transformed problem

Section 3

\((\widehat{\textbf{U}}, \widehat{P},\widehat{\varvec{\Omega }},\widehat{\textbf{A}})\)

The fixed point, functions on the right-hand side

Section 3

\(F^{*}\), \(G^{*}\), \(H^{*}\)

The right-hand side for the Stokes problem

Section 3

\(X_{p,q}^T\), \(Y_{p,q}^T\)

\(X_{p,q}^T :=W^{1,p}(0,T;L^q(\Omega _{F}))\cap L^p(0,T;W^{2,q}(\Omega _F))\) \(Y_{p,q}^T := L^p(0,T; {W}^{1,q}(\Omega _{F}))\)

Section 3, Theorem 3.1

\(F_l(\textbf{U},P)\)

\(F_l(\textbf{U},P)=\partial _{t}^l(F({\textbf{U}},{P}))-F(\partial _{t}^l{\textbf{U}},\partial _{t}^l{P})\)

(4.6)–(4.9)

\(G_l(\textbf{A})\)

\(G_l(\textbf{A})=\frac{d^l}{{dt}^l}(G(\textbf{A}))-G\left( \frac{d^l}{{dt}^l}\textbf{A}\right) \)

(4.5) (\(l=1\)) and (6.3) (general case)

\(H_l(\varvec{\Omega })\)

\(H_l(\varvec{\Omega })=\frac{d^l}{{dt}^l}(H(\varvec{\Omega }))-H\left( \frac{d^l}{{dt}^l}\varvec{\Omega }\right) \)

(4.5) (\(l=1\)) (6.3) (general case)

\(\mathcal {G}_l(P)\)

The operator obtained by taking lth order time derivative of the coefficients in operator \(\mathcal {G}\), i.e. \(\mathcal {G}_l(P)=\partial _t^l(\nabla \textbf{Y}\nabla \textbf{Y}^T)\nabla P\)

Section 4.1 (l = 1), Appendix 6.1 (general case)

\(\mathcal {F}_l(\textbf{U})\)

\(\mathcal {F}_l(\textbf{U}) = \mathcal {L}_l(\textbf{U})-\mathcal {M}_l(\textbf{U})-\mathcal {N}_l(\textbf{U})-\mathcal {G}_l(P)\), \(\mathcal {L}_l, \mathcal {M}_l, \mathcal {N}_l\) are operators obtained by taking lth order time derivative of the coefficients in operators \(\mathcal {L}, \mathcal {M}, \mathcal {N}\)

Section 4.1 (l = 1), Appendix 6.1 (general case)

\(\mathbb {G}\)

\(\mathbb {G}=\nabla \textbf{X}^T\nabla \textbf{X}\)

Section 4.1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muha, B., Nečasová, Š. & Radošević, A. On the regularity of weak solutions to the fluid–rigid body interaction problem. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02664-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02664-0

Navigation