Skip to main content
Log in

Global solutions of the Navier-Stokes equations in a uniformly rotating space

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the Navier-Stokes system of equations in a three-dimensional space rotating uniformly about the vertical axis with the periodicity condition with respect to the spatial variables. Studying this problem is based on expanding given and sought vector functions in Fourier series in terms of the eigenfunctions of the curl and Stokes operators. Using the Galerkin method, we reduce the problem to the Cauchy problem for the system of ordinary differential equations, which has a simple explicit form in the basis under consideration. Its linear part is diagonal, which allows writing explicit solutions of the linear Stokes-Sobolev system, to which fluid flows with a nonzero vorticity correspond. Based on the study of the nonlinear interaction of vortical flows, we find an approach that we can use to obtain families of explicit global solutions of the nonlinear problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol’d, Selecta-60 [in Russian], Fazis, Moscow (1997), pp. 215–236.

    MATH  Google Scholar 

  2. V. V. Kozlov, General Theory of Vortices [in Russian], RKhD, Izhevsk (1998); English transl.: Dynamical Systems X: General Theory of Vortices (Encycl. Math. Sci., Vol. 67), Springer, Berlin (2003).

    Google Scholar 

  3. V. V. Pukhnachov, Usp. Mekh., 4, 6–76 (2006).

    Google Scholar 

  4. S. Chandrasekhar and P. C. Kendall, J. Astrophys., 126, 457–460 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  5. J. B. Taylor, Phys. Rev. Lett., 33, 1139–1141 (1974).

    Article  ADS  Google Scholar 

  6. D. Montgomery, L. Turner, and G. Vahala, Phys. Fluids, 21, 757–764 (1978).

    Article  MATH  ADS  Google Scholar 

  7. R. S. Saks, J. Math. Sci., 136, 3794–3811 (2006).

    Article  MathSciNet  Google Scholar 

  8. R. S. Saks, Dokl. Math., 76, 724–728 (2007).

    Article  MATH  Google Scholar 

  9. R. S. Saks, “The solution of spectral problems for the curl and Stokes operators with periodic boundary conditions and some classes of explicit solutions of Navier-Stokes equations,” in: More Progress in Analysis (Proc. 5th Intl. ISAAC Congress, Italy, 2005), World Scientific, Singapore (2008), pp. 1195–1207.

    Google Scholar 

  10. R. S. Saks, Dokl. Math., 79, 35–40 (2009).

    Article  Google Scholar 

  11. L. D. Landau and E. M. Lifshits, Theoretical Physics [in Russian], Vol. 6, Hydrodynamics, Nauka, Moscow (1988); English transl.: Fluid Mechanics (Vol. 6 of Course of Theoretical Physics), Pergamon, Oxford (1987).

    Google Scholar 

  12. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1988); English transl. prev. ed. (Pure Appl. Math., Vol. 3), Marcel Dekker, New York (1971).

    MATH  Google Scholar 

  13. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow [in Russian], Nauka, Moscow (1970); English transl. prev. ed., Gordon and Breach, New York (1963).

    Google Scholar 

  14. R. Temam, Navier-Stokes equations: Theory and Numerical Analysis [in Russian], Fazis, Moscow (1997); English transl., Amer. Math. Soc., Providence, R. I. (2001).

    Google Scholar 

  15. H. P. Greenspan, The Theory of Rotating Fluids, Cambridge Univ. Press, Cambridge (1980).

    MATH  Google Scholar 

  16. W. Thomson (Lord Kelvin), Phil. Mag., Proc. Roy. Soc. Edinburgh Sec. 5, 10, 443–456 (1880).

    Google Scholar 

  17. R. R. Long, J. Atmospheric Sci., 8, 207–221 (1951).

    Article  ADS  Google Scholar 

  18. D. Fultz, J. Atmospheric Sci., 16, 199–208 (1959).

    Article  ADS  Google Scholar 

  19. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon, Oxford (1981).

    Google Scholar 

  20. O. M. Phillips, Phys. Fluids, 6, 513–520 (1963).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. A. Babin, A. Mahalov, and B. Nicolaenko, Indiana Univ. Math. J., 48, 1133–1176 (1999).

    MATH  MathSciNet  Google Scholar 

  22. A. S. Makhalov and V. P. Nikolaenko, Russ. Math. Surveys, 58, 287–318 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. G. Khaibullin and R. S. Saks, “On a program of finding coefficients of the Fourier series and its application in studying the Navier-Stokes system on a three-dimensional torus with periodic boundary conditions,” in: Collected Works of 9th Intl. Seminar-Workshop “Cubic Formulas and Their Applications” [in Russian], Inst. Math. Comp. Center, Ufa Science Center, Russ. Acad. Sci., Ufa (2007), pp. 175–181.

    Google Scholar 

  24. S. L. Sobolev, Izv. AN SSSR Ser. Matem., 18, No. 1, 3–50 (1954).

    MathSciNet  Google Scholar 

  25. R. S. Saks, Differ. Uravn., 8, 126–133 (1972).

    MATH  MathSciNet  Google Scholar 

  26. R. S. Saks, “Normally solvable and Noetherian boundary value problems for some systems of equations of mathematical physics,” in: Application of Functional Analysis to Partial Differential Equations [in Russian] (S. V. Uspenskii, ed.) (Trudy Seminara S. L. Soboleva 2), Vol. 2, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk (1983), pp. 129–158.

    Google Scholar 

  27. R. S. Saks, Sov. Math. Dokl., 30, 735–739 (1984).

    MATH  Google Scholar 

  28. V. A. Il’in, Selected Works [in Russian], Vol. 1, Makspress, Moscow (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Saks.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 162, No. 2, pp. 196–215, February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saks, R.S. Global solutions of the Navier-Stokes equations in a uniformly rotating space. Theor Math Phys 162, 163–178 (2010). https://doi.org/10.1007/s11232-010-0012-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0012-8

Keywords

Navigation