Skip to main content
Log in

Toward a quantum generalization of equilibrium statistical thermodynamics: ħ-k Dynamics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the quantum statistical mechanics (QSM) describing the quantum and thermal properties of objects only has the sense of a particular semiclassical approximation. We propose a more general microdescription than in QSM of objects in a thermal bath with the vacuum explicitly taken into account; we call it ħ-k dynamics. We construct a qualitatively new model of the object environment, namely, a quantum thermal bath. We study its properties including the cases of a “cold” and a “thermal” vacuum. We introduce the stochastic action operator and show its fundamental role in the microdescription. We establish that the corresponding macroparameter, the effective action, plays just as significant a role in the macrodescription. The most important effective macroparameters of equilibrium quantum statistical thermodynamics—internal energy, temperature, and entropy—are expressed in terms of this macroparameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], Fizmatlit, Moscow (2001); English transl. prev. ed. (Vol. 5 of Course of Theoretical Physics), Pergamon, Oxford (1968).

    Google Scholar 

  2. R. B. Laughlin, Usp. Fiz. Nauk, 170, 292–303 (2000); Rev. Modern Phys., 71, 863–874 (1999).

    Article  Google Scholar 

  3. A. D. Sukhanov, Phys. Part. Nucl., 36, 667–698 (2005).

    Google Scholar 

  4. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Fizmatlit, Moscow (1971); English transl., Consultants Bureau, New York (1974).

    Google Scholar 

  5. J. Wu and A. Widom, Phys. Rev. E, 57, 5178–5183 (1998).

    Article  ADS  Google Scholar 

  6. D. T. Son and A. O. Starinets, Ann. Rev. Nucl. Part. Sci., 57, 95–118 (2007); arXiv:0704.0240v2 [hep-th] (2007).

    Article  ADS  Google Scholar 

  7. N. Kryloff and N. Bogoliouboff, “Sur les équations de Focker-Planck déduites dans la théorie des perturbations à l’aide d’une méthode basée sur les propriétés spectrales de l’hamiltonien perturbateur: Application à la mécanique classique et à la mécanique quantique,” in: Ann. Chaire Phys. Math., Vol. 4, Kiev (1939), pp. 81–157; N. N. Bogoliubov, “On the equations...,” in: Collection of Scientific Works [in Russian] (A. D. Sukhanov, ed.), Vol. 5, Nauka, Moscow (2006), pp. 58–137.

    MathSciNet  Google Scholar 

  8. R. P. Feynman et al., Statistical Mechanics (A set of lectures by R. P. Feynman, notes taken by R. Kikuchi and H. A. Feiveson, edited by J. Shaham), W. A. Benjamin, Reading, Mass. (1972).

    Google Scholar 

  9. N. N. Bogoliubov, “Kinetic equations for the electron-phonon system,” in: Collection of Scientific Works [in Russian] (A. D. Sukhanov, ed.), Vol. 5, Nauka, Moscow (2006), p. 639–685.

    Google Scholar 

  10. A. D. Sukhanov, Theor. Math. Phys., 154, 153–164 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Einstein, Ann. Phys., 9, 417–433 (1902); 11, 170–187 (1903); 14, 351–362 (1904).

    Article  Google Scholar 

  12. J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics, Dover, New York (1960).

    Google Scholar 

  13. A. D. Sukhanov, Theor. Math. Phys., 148, 1123–1134 (2006).

    Article  MathSciNet  Google Scholar 

  14. H. Umezawa, Advanced Field Theory: Micro, Macro, and Thermal Physics, Amer. Inst. Phys., New York (1993).

    Google Scholar 

  15. A. Einstein, Verhandl. Dtsch. Phys. Ges., 16, 820–828 (1914).

    Google Scholar 

  16. A. M. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin (1986).

    MATH  Google Scholar 

  17. F. Bloch, Z. Phys., 74, 295–335 (1932).

    Article  MATH  ADS  Google Scholar 

  18. N. N. Bogoliubov, “On spontaneous violation of symmetry in statistical mechanics,” in: Collection of Scientific Works [in Russian] (A. D. Sukhanov, ed.), Vol. 8, Nauka, Moscow (2007), pp. 398–410.

    Google Scholar 

  19. L. Boltzman, “IV. The analogy with the propositions from the domain of physics, especially with the propositions of the theory of heat,” Excerpt from “Lectures on the principles of mechanics” in: The Variational Principles of Mechanics [in Russian] (Coll. papers of classics of science, L. S. Polak, ed.), Fizmatlit, Moscow (1959), pp. 468–496.

    Google Scholar 

  20. E. Schrödinger, Sitzungsberg. Preuss. Akad. Wiss. Berlin (Math. Phys.), 296–303 (1930).

  21. O. N. Golubjeva and A. D. Sukhanov, Acta Physica Debrecina, 42, 69–81 (2008).

    Google Scholar 

  22. I. I. Hirschman Jr., Amer. J. Math., 79, 152–156 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  23. V. V. Dodonov and V. I. Man’ko, Trudy Fiz. Inst. Lebedev., 183, 5–70 (1987).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Golubeva.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 160, No. 2, pp. 370–384, August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhanov, A.D., Golubeva, O.N. Toward a quantum generalization of equilibrium statistical thermodynamics: ħ-k Dynamics. Theor Math Phys 160, 1177–1189 (2009). https://doi.org/10.1007/s11232-009-0109-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0109-0

Keywords

Navigation