Skip to main content
Log in

Nonlinear generalized master equations and accounting for initial correlations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a new method based on using a time-dependent operator (generally not a projection operator) converting a distribution function (statistical operator) of a total system into the relevant form that allows deriving new exact nonlinear generalized master equations (GMEs). The derived inhomogeneous nonlinear GME is a generalization of the linear Nakajima-Zwanzig GME and can be viewed as an alternative to the BBGKY chain. It is suitable for obtaining both nonlinear and linear evolution equations. As in the conventional linear GME, there is an inhomogeneous term comprising all multiparticle initial correlations. To include the initial correlations into consideration, we convert the obtained inhomogeneous nonlinear GME into the homogenous form by the previously suggested method. We use no conventional approximation like the random phase approximation (RPA) or the Bogoliubov principle of weakening of initial correlations. The obtained exact homogeneous nonlinear GME describes all evolution stages of the (sub)system of interest and treats initial correlations on an equal footing with collisions via the modified memory kernel. As an application, we obtain a new homogeneous nonlinear equation retaining initial correlations for a one-particle distribution function of the spatially inhomogeneous nonideal gas of classical particles. In contrast to existing approaches, this equation holds for all time scales and takes the influence of pair collisions and initial correlations on the dissipative and nondissipative characteristics of the system into account consistently with the adopted approximation (linear in the gas density). We show that on the kinetic time scale, the time-reversible terms resulting from the initial correlations vanish (if the particle dynamics are endowed with the mixing property) and this equation can be converted into the Vlasov-Landau and Boltzmann equations without any additional commonly used approximations. The entire process of transition can thus be followed from the initial reversible stage of the evolution to the irreversible kinetic stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946); English transl. (Stud. Statist. Mech., Vol. 1), North-Holland, Amsterdam (1962).

    Google Scholar 

  2. J. R. Dorfman and E. G. D. Cohen, J. Math. Phys., 8, 282–297 (1967).

    Article  ADS  Google Scholar 

  3. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam (1972).

    Google Scholar 

  4. Yu. L. Klimontovich, Statistical Physics [in Russian], Nauka, Moscow (1982); English transl., Harwood Academic, Chur (1986).

    Google Scholar 

  5. O. E. Lanford III, “Time evolution of large classical systems,” in: Dynamical Systems, Theory and Applications (Lect. Notes Phys., Vol. 38, E. J. Moser, ed.), Vol. 38, Springer, Berlin (1975), pp. 1–111.

    Chapter  Google Scholar 

  6. D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, J. Stat. Phys., 116, 381–410 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. N. G. Van Kampen, J. Stat. Phys., 115, 1057–1072 (2004).

    Article  MATH  ADS  Google Scholar 

  8. S. Nakajima, Progr. Theoret. Phys., 20, 948–959 (1958).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. R. Zwanzig, J. Chem. Phys., 33, 1338–1341 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Prigogine, Non-Equilibrium Statistical Mechanics (Monogr. Statist. Phys. and Thermodynamics, Vol. 1), Interscience, New York (1962).

    MATH  Google Scholar 

  11. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford (2002).

    MATH  Google Scholar 

  12. B. Bellomo, G. Compagno, and F. Petruccione, J. Phys. A, 38, 10203–10216 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. F. Shibata, Y. Takahashi, and N. Hashitsume, J. Stat. Phys., 17, 171–187 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Shibata and T. Arimitsu, J. Phys. Soc. Japan, 49, 891–897 (1980).

    Article  ADS  Google Scholar 

  15. V. F. Los, J. Phys. A, 34, 6389–6403 (2001).

    Article  MATH  ADS  Google Scholar 

  16. V. F. Los, J. Stat. Phys., 119, 241–271 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics, Vol. 1, Amer.Math. Soc., Providence, R. I. (1963).

    Google Scholar 

  18. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).

    MATH  Google Scholar 

  19. Yu. L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas [in Russian], Nauka, Moscow (1975); English transl. (Internat. Ser. Natural Philosophy, Vol. 105), Pergamon, Oxford (1982).

    Google Scholar 

  20. S. Tasaki, K. Yuasa, P. Facchi, G. Kimura, H. Nakasato, I. Ohba, and S. Pascazio, Ann. Phys., 322, 631–656 (2007).

    Article  MATH  ADS  Google Scholar 

  21. K. Yuasa, S. Tasaki, P. Facchi, G. Kimura, H. Nakasato, I. Ohba, and S. Pascazio, Ann. Phys., 322, 657–676 (2007).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Los.

Additional information

Dedicated to the memory of Academician N. N. Bogoliubov

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 160, No. 2, pp. 304–330, August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Los, V.F. Nonlinear generalized master equations and accounting for initial correlations. Theor Math Phys 160, 1124–1143 (2009). https://doi.org/10.1007/s11232-009-0105-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0105-4

Keywords

Navigation