Skip to main content
Log in

Asymmetric Hubbard model in the generating functional method: Spectral functions in the Falicov-Kimball limit

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the framework of the dynamical mean field theory, we investigate the densities of states of the fermionic and bosonic branches of the spectrum of the asymmetric Hubbard model, which is used to describe a strongly correlated two-sort (A, B) system of fermions (electrons). To solve the effective one-site problem, we develop an approximate analytic approach based on the Kadanoff-Baym generating functional method. This technique allows constructing the irreducible part (the mass operator) of the particle Green’s function in the form of a formal expansion in powers of the coherent potential. In the first order, the scheme reproduces the so-called generalized approximation Hubbard-III. To improve it, we develop a self-consistent method for calculating both the fermionic and bosonic Green’s functions. As U → ∞ in the Falicov-Kimball limit for the asymmetric Hubbard model, when the particles of sort B become localized, we find the spectral densities ρB and ρAB of states of both branches and consider the changes of their forms depending on temperature and particle concentrations. Comparing with the exact thermodynamic dependences µB(nB), we establish the applicability limits of the self-consistent generalized approximation Hubbard-III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Izyumov, Phys. Usp., 38, 385 (1995).

    Article  ADS  Google Scholar 

  2. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Modern Phys., 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. K. Freericks and V. Zlatić, Rev. Modern Phys., 75, 1333 (2003).

    Article  ADS  Google Scholar 

  4. A. N. Kocharian and G. R. Reich, J. Appl. Phys., 76, 6127 (1994).

    Article  ADS  Google Scholar 

  5. D. Ueltschi, J. Stat. Phys., 116, 681 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. C. D. Batista, Phys. Rev. Lett., 89, 166403 (2002).

    Article  ADS  Google Scholar 

  7. G. Fáth, Z. Domański, and R. Lemański, Phys. Rev. B, 52, 13910 (1995).

    Article  Google Scholar 

  8. C. A. Macedo and A. M. C. de Souza, Phys. Rev. B, 65, 153109 (2002).

    Article  ADS  Google Scholar 

  9. I. V. Stasyuk and O. B. Hera, Phys. Rev. B, 72, 045134 (2005).

    Google Scholar 

  10. I. V. Stasyuk and O. B. Hera, Eur. Phys. J. B, 48, 339 (2005).

    Article  ADS  Google Scholar 

  11. W. Metzner and D. Vollhardt, Phys. Rev. Lett., 62, 324 (1989).

    Article  ADS  Google Scholar 

  12. M. Jarrell, Phys. Rev. Lett., 69, 168 (1992).

    Article  ADS  Google Scholar 

  13. M. J. Rozenberg, X. Y. Zhang, and G. Kotliar, Phys. Rev. Lett., 69, 1236 (1992).

    Article  ADS  Google Scholar 

  14. A. Georges and W. Krauth, Phys. Rev. Lett., 69, 1240 (1992).

    Article  ADS  Google Scholar 

  15. M. Caffarel and W. Krauth, Phys. Rev. Lett., 72, 1545 (1994).

    Article  ADS  Google Scholar 

  16. Q. Si, M. J. Rozenberg, G. Kotliar, and A. E. Ruckenstein, Phys. Rev. Lett., 72, 2761 (1994).

    Article  ADS  Google Scholar 

  17. R. Bulla, Adv. Solid State Phys., 40, 169 (2000).

    Article  Google Scholar 

  18. K. Held et al., Psi-k Newsletter, 56, 65 (2003).

    Google Scholar 

  19. A. Georges, AIP Conf. Proc., 715, 3 (2004).

    Article  ADS  Google Scholar 

  20. I. V. Stasyuk, Cond. Matter Phys., 3, No. 2(22), 437 (2000).

    Google Scholar 

  21. H. O. Jeschke and G. Kotliar, Phys. Rev. B, 71, 085103 (2005).

    Google Scholar 

  22. X. Dai, K. Haule, and G. Kotliar, Phys. Rev. B, 72, 045111 (2005).

  23. A. M. Shvaika, Phys. Rev. B, 62, 2358 (2000).

    Article  ADS  Google Scholar 

  24. N. E. Bickers, D. L. Cox, and J. W. Wilkins, Phys. Rev. B, 36, 2036 (1987).

    Article  ADS  Google Scholar 

  25. M. B. Zölfl et al., Phys. Rev. B, 61, 12810 (2000).

    Article  ADS  Google Scholar 

  26. I. V. Stasyuk and O. B. Hera, Cond. Matter Phys., 9, No. 3(47), 587 (2006).

    Google Scholar 

  27. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York (1962).

    MATH  Google Scholar 

  28. Y. A. Izyumov and N. I. Chaschin, Phys. Metals Metallogr., 92, 451 (2001).

    Google Scholar 

  29. Y. A. Izyumov and N. I. Chaschin, Phys. Metals Metallogr., 92, 531 (2001).

    Google Scholar 

  30. Y. A. Izyumov, N. I. Chaschin, and V. Y. Yushankhai, Phys. Rev. B, 65, 214425 (2002).

    Article  ADS  Google Scholar 

  31. Y. A. Izyumov, N. I. Chaschin, D. S. Alexeev, and F. Mancini, Eur. Phys. J. B, 45, 69 (2005).

    Article  ADS  Google Scholar 

  32. I. V. Stasyuk and O. B. Hera, Cond. Matter Phys., 6, No. 1(33), 127 (2003).

    Google Scholar 

  33. I. V. Stasyuk and A. M. Shvaika, Ukrainian J. Phys., 47, 975 (2002).

    Google Scholar 

  34. D. N. Zubarev, Sov. Phys. Usp., 3, 320 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Hubbard, Proc. Roy. Soc. London Ser. A, 281, 401 (1964).

    Article  ADS  Google Scholar 

  36. M. Potthoff, T. Herrmann, T. Wegner, and W. Nolting, Phys. Stat. Sol. B, 210, 199 (1998).

    Article  Google Scholar 

  37. U. Brandt and C. Mielsch, Z. Phys. B, 75, 365 (1989).

    Article  ADS  Google Scholar 

  38. U. Brandt and C. Mielsch, Z. Phys. B, 79, 295 (1990).

    Article  ADS  Google Scholar 

  39. U. Brandt and C. Mielsch, Z. Phys. B, 82, 37 (1991).

    Article  ADS  Google Scholar 

  40. J. K. Freericks, C. Gruber, and N. Macris, Phys. Rev. B, 60, 1617 (1999).

    Article  ADS  Google Scholar 

  41. B. M. Letfulov, Eur. Phys. J. B, 11, 423 (1999).

    Article  ADS  Google Scholar 

  42. I. V. Stasyuk and A. M. Shvaika, J. Phys. Stud., 3, 177 (1999).

    Google Scholar 

  43. U. Brandt and M. P. Urbanek, Z. Phys. B, 89, 297 (1992).

    Article  ADS  Google Scholar 

  44. J. K. Freericks, V. M. Turkowski, and V. Zlatić, Phys. Rev. B, 71, 115111 (2005).

    Article  ADS  Google Scholar 

  45. A. M. Shvaika, Phys. C, 341–348, 177 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Stasyuk.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 154, No. 1, pp. 164–182, January, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stasyuk, I.V., Hera, O.B. Asymmetric Hubbard model in the generating functional method: Spectral functions in the Falicov-Kimball limit. Theor Math Phys 154, 137–152 (2008). https://doi.org/10.1007/s11232-008-0012-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-008-0012-0

Keywords

Navigation