Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active inference in the motor system. Brain Structure and Function, 218(3), 611–643.
Google Scholar
Anderson, B., & Moore, J. B. (1990). Optimal control: Linear quadratic methods. Upper Saddle River: Prentice-Hall Inc.
Google Scholar
Anderson, M. L. (2017). Of Bayes and bullets: An embodied, situated, targeting-based account of predictive processing. Mainz: Johannes Gutenberg-Universität Mainz.
Google Scholar
Baltieri, M., & Buckley, C. L. (2017). An active inference implementation of phototaxis. In Proceedings of the 14th European conference on artificial life 2017, Lyon, France, 4–8 September 2017.
Baltieri, M., & Buckley, C. L. (2018). The modularity of action and perception revisited using control theory and active inference. In Artificial life conference proceedings. MIT Press.
Baltieri, M., & Buckley, C. L. (2019a), Nonmodular architectures of cognitive systems based on active inference. In Proceedings of the international joint conference on neural networks (IJCNN), Budapest, Hungary, 2019.
Baltieri, M., & Buckley, C. L. (2019b). Generative models as parsimonious descriptions of sensorimotor loops. Behavioral and Brain Sciences, 42, E218.
Google Scholar
Bar-Shalom, Y., & Tse, E. (1974). Dual effect, certainty equivalence, and separation in stochastic control. IEEE Transactions on Automatic Control, 19(5), 494–500.
Google Scholar
Barrett, H. C., & Kurzban, R. (2006). Modularity in cognition: Framing the debate. Psychological Review, 113(3), 628.
Google Scholar
Bermúdez, J. L. (1998). Representation and mind. The paradox of self-consciousness. Massachusetts: MIT.
Google Scholar
Bizzi, E., Tresch, M. C., Saltiel, P., & d’Avella, A. (2000). New perspectives on spinal motor systems. Nature Reviews Neuroscience, 1(2), 101–108.
Google Scholar
Brette, R. (2013). Subjective physics. arXiv preprint arXiv:1311.3129.
Bridgeman, B. (2007). Efference copy and its limitations. Computers in Biology and Medicine, 37(7), 924–929.
Google Scholar
Brooks, R. A. (1991). New approaches to robotics. Science, 253(5025), 1227–1232.
Google Scholar
Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599.
Google Scholar
Buhrmann, T., & Di Paolo, E. A. (2014). Spinal circuits can accommodate interaction torques during multijoint limb movements. Frontiers in Computational Neuroscience, 8, 144.
Google Scholar
Burge, T. (2010). Origins of perception. . Disputatio, 4(29), 1–38.
Google Scholar
Butterfill, S. A., & Sinigaglia, C. (2014). Intention and motor representation in purposive action. Philosophy and Phenomenological Research, 88(1), 119–145.
Google Scholar
Cappuccio, M. L., Gray, R., Hill, D. M., Mesagno, C., & Carr, T. H. (2019). The many threats of self-consciousness: Embodied approaches to choking under pressure in sensorimotor skills. Handbook of Embodied Cognition and Sport Psychology, 101.
Cappuccio, M. L., & Ilundáin-Agurruza, J. (2020). Swim or sink. In Habits: Pragmatist approaches from cognitive science, neuroscience, and social theory (p. 137).
Cappuccio, M. L., Kirchhoff, M. D., Alnajjar, F., & Tani, J. (2019). Unfulfilled prophecies in sport performance: Active inference and the choking effect. Journal of Consciousness Studies, 27(3–4), 152–184.
Google Scholar
Chiel, H. J., & Beer, R. D. (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences, 20(12), 553–557.
Google Scholar
Christensen, W. (2019). Skilled action. Philosophy. Compass, 14(11), e12631.
Google Scholar
Christensen, W., & Sutton, J. (2018). Mesh: cognition, body and environment in skilled action. In Handbook of Embodied Cognition and Sport Psychology, 157.
Clark, A. (1997). Being There. Cambridge, MA: MIT Press.
Google Scholar
Clark, A. (2015a). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford: Oxford University Press.
Google Scholar
Clark, A. (2015b). Radical predictive processing. The Southern Journal of Philosophy, 53, 3–27.
Google Scholar
Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.
Coltheart, M. (1999). Modularity and cognition. Trends in Cognitive Sciences, 3(3), 115–120.
Google Scholar
Di Paolo, E., Buhrmann, T., & Barandiaran, X. (2017). Sensorimotor life: An enactive proposal. Oxford: Oxford University Press.
Google Scholar
Drayson, Z. (2018). The realizers and vehicles of mental representation. Studies in History and Philosophy of Science Part A, 68, 80–87.
Google Scholar
Dretske, F. R. E. D. (1988). Representational systems. Philosophy of mind: Contemporary readings, New York: Routledge, 304-331.
Engel, A. K., Friston, K. J., & Kragic, D. (Eds.). (2015). The pragmatic turn: Toward action-oriented views in cognitive sciencee (Vol. 18). Cambridge: MIT Press.
Google Scholar
Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202–209.
Google Scholar
Feldman, A. G. (2009). New insights into action–perception coupling. Experimental Brain Research, 194(1), 39–58.
Google Scholar
Feldman, A. G. (2015). Referent control of action and perception. In Challenging conventional theories in behavioral neuroscience.
Feldman, A. G. (2016). Active sensing without efference copy: Referent control of perception. Journal of Neurophysiology, 116(3), 960–976.
Google Scholar
Fodor, J. A. (1983). The modularity of mind. Cambridge: MIT press.
Google Scholar
Frege, G. (1892). Über sinn und bedeutung. Zeitschrift für Philosophie und Philosophische Kritik, 100, 25–50.
Google Scholar
Fridland, E. (2017). Skill and motor control: Intelligence all the way down. Philosophical Studies, 174(6), 1539–1560.
Google Scholar
Fridland, E. (2020) The nature of skill: Functions and control structures Ellen Fridland. in Fridland, E., & Pavese, C. Routledge handbook on skill and expertise. Routledge.
Fridland, E. R. (2015). Skill, nonpropositional thought, and the cognitive penetrability of perception. Journal for General Philosophy of Science, 46(1), 105–120.
Google Scholar
Friston, K. (2011). What is optimal about motor control? Neuron, 72(3), 488–498.
Google Scholar
Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 20130475.
Google Scholar
Friston, K., Adams, R., & Montague, R. (2012). What is value—accumulated reward or evidence? Frontiers in Neurorobotics, 6, 11.
Google Scholar
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29(1), 1–49.
Google Scholar
Friston, K., Samothrakis, S., & Montague, R. (2012). Active inference and agency: Optimal control without cost functions. Biological Cybernetics, 106(8–9), 523–541.
Google Scholar
Friston, K. J., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free-energy formulation. Biological cyberneTics, 102(3), 227–260.
Google Scholar
Gallagher, S. (2020). Action and interaction. Oxford: Oxford University Press.
Google Scholar
George, N., & Sunny, M. M. (2019). Challenges to the modularity thesis under the Bayesian brain models. Frontiers in Human Neuroscience, 13, 1–7.
Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
Google Scholar
Glick, E. (2015). Practical modes of presentation. Noûs, 49(3), 538–559.
Google Scholar
Godfrey-Smith, P. (2007). Information in biology. In D. Hull & M. Ruse (Eds.), The Cambridge companion to the philosophy of biology. Cambridge: Cambridge University Press.
Google Scholar
Gray, R. (2020). Attentional theories of choking under pressure revisited. In Handbook of Sport Psychology, 595–610.
Griffiths, P., & Stotz, K. (2013). Genetics and philosophy: An introduction. Cambridge: Cambridge University Press.
Google Scholar
Hipólito, I. (2019). Perception is not always and everywhere inferential. Australasian Philosophical Review, 3(1), 184–188.
Google Scholar
Hipólito, I., & Martins, J. (2017). Mind-life continuity: A qualitative study of conscious experience. Progress in Biophysics and Molecular Biology., 131, 432–444.
Google Scholar
Hipólito, I., Ramstead, M., Constant, A., & Friston, K. (2020). Cognition coming about: Self-organisation and free-energy. Physics of Life Reviews. https://doi.org/10.1016/j.plrev.2020.08.001.
Article
Google Scholar
Hollerbach, J. M. (1982). Computers, brains and the control of movement. Trends in Neurosciences, 5, 189–192.
Google Scholar
Hurley, S. (2001). Perception and action: Alternative views. Synthese, 129(1), 3–40.
Google Scholar
Hutto, D. D. (2005). Knowing what? Radical versus conservative enactivism. Phenomenology and the Cognitive Sciences, 4(4), 389–405.
Google Scholar
Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism. Basic Minds without Content.
Jankovic, M. (2019). Ascribing practical knowledge. Linguistics and Philosophy, 1–29.
Jeannerod, M. (1997). The cognitive neuroscience of action. Oxford, UK: Blackwell Publishers Inc.
Google Scholar
Jeannerod, M. (2006). Motor cognition: What actions tell the self. New York, NY: Oxford University Press.
Google Scholar
Jeannerod, M. (Ed.). (2018). Attention and performance XIII: Motor representation and control. Hove: Psychology Press.
Google Scholar
Kappen, H. (2011). Optimal control theory and the linear Bellman equation. In D. Barber, A. Cemgil, & S. Chiappa (Eds.), Bayesian time series models (pp. 363–387). Cambridge: Cambridge University Press.
Google Scholar
Kappen, H. J. (2011). Optimal control theory and the linear bellman equation.
Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.
Google Scholar
Latash, M. L. (2008). Synergy. Oxford: Oxford University Press.
Google Scholar
Latash, M. L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217(1), 1–5.
Google Scholar
Latash, M. L. (2020). On Primitives in Motor Control. Motor Control, 1(aop), 1-29.
Latash, M. L., Levin, M. F., Scholz, J. P., & Schöner, G. (2010). Motor control theories and their applications. Medicina, 46(6), 382.
Google Scholar
Levy, N. (2017). Embodied savoir-faire: Knowledge-how requires motor representations. Synthese, 194(2), 511–530.
Google Scholar
Machery, E. (2009). Doing without concepts. Oxford: Oxford University Press.
Google Scholar
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York, NY: Henry Holt and Co., Inc.
Google Scholar
Margolis, E., & Laurence, S. (Eds.). (1999). Concepts: Core readings. Cambridge: MIT Press.
Google Scholar
May, R. (2006). Frege on indexicals. The Philosophical Review, 115(4), 487–516.
Google Scholar
Maye, A., & Engel, A. K. (2013). Extending sensorimotor contingency theory: Prediction, planning, and action generation. Adaptive Behavior, 21(6), 423–436.
Google Scholar
McNamee, D., & Wolpert, D. M. (2019). Internal models in biological control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 339–364.
Google Scholar
Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge: MIT Press.
Google Scholar
Millikan, R. G. (1991). Perceptual content and Fregean myth. Mind, 100(4), 439–459.
Google Scholar
Millikan, R. G. (1997). Images of identity: In search of modes of presentation. Mind, 106(423), 499–519.
Google Scholar
Mylopoulos, M., & Pacherie, E. (2017). Intentions and motor representations: The interface challenge. Review of Philosophy and Psychology, 8(2), 317–336.
Google Scholar
Mylopoulos, M., & Pacherie, E. (2019). Intentions: The dynamic hierarchical model revisited. Wiley Interdisciplinary Reviews: Cognitive Science, 10(2), e1481.
Google Scholar
Newen, A., De Bruin, L., & Gallagher, S. (Eds.). (2018). The Oxford handbook of 4E cognition. Oxford: Oxford University Press.
Google Scholar
Noë, A. (2004). Action in perception. Cambridge: MIT press.
Google Scholar
O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939–973.
Google Scholar
Ostry, D. J., & Feldman, A. G. (2003). A critical evaluation of the force control hypothesis in motor control. Experimental Brain Research, 153(3), 275–288.
Google Scholar
Pacherie, E. (2011). Nonconceptual representations for action and the limits of intentional control. Social Psychology, 42(1), 67.
Google Scholar
Pacherie, E. (2018). Motor intentionality. The Oxford handbook of 4E cognition. Oxford: Oxford University Press.
Google Scholar
Parr, T., & Friston, K. J. (2018). The discrete and continuous brain: From decisions to movement—and back again. Neural Computation, 30(9), 2319–2347.
Google Scholar
Pavese, C. (2015). Practical senses. Philosophers’ Imprint, 15.
Pavese, C. (2019). The psychological reality of practical representation. Philosophical Psychology, 32(5), 784–821.
Google Scholar
Peacocke, C. (1986). Explanation in computational psychology: Language, perception and level 1.5.1. Mind & language, 1(2), 101–123.
Google Scholar
Peacocke, C. (1992). A study of concepts. Cambridge: The MIT Press.
Google Scholar
Pezzulo, G., Rigoli, F., & Friston, K. (2015). Active Inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 17–35.
Google Scholar
Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Sciences, 18(9), 451–456.
Google Scholar
Piñeros Glasscock, J. S. (2019). Practical Knowledge and Luminosity. Mind.
Prinz, J. J. (2004). Furnishing the mind: Concepts and their perceptual basis. Cambridge: MIT press.
Google Scholar
Prosser, S. (2019). Shared modes of presentation. Mind & Language, 34(4), 465–482.
Google Scholar
Pylyshyn, Z. (1999). Is vision continuous with cognition?: The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22(3), 341–365.
Google Scholar
Raftopoulos, A. (2019). Cognitive penetrability and the epistemic role of perception (pp. 223–250). Cham: Palgrave Macmillan.
Google Scholar
Ramstead, M. J., Kirchhoff, M. D., & Friston, K. J. (2019). A tale of two densities: Active inference is enactive inference. Adaptive Behavior. https://doi.org/10.1177/1059712319862774.
Article
Google Scholar
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.
Google Scholar
Rosch, E., Varela, F., & Thompson, E. (1991). The embodied mind. Cognitive science and human experience. Cambridge: MIT press.
Google Scholar
Sacchi, E. (2018). Fregean presentationalism. Eva Picardi on language, analysis and history (pp. 241–261). Cham: Palgrave Macmillan.
Google Scholar
Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience, 5(7), 532–545.
Google Scholar
Schack, T., & Frank, C. (2020). Mental representation and the cognitive architecture of skilled action. Review of Philosophy and Psychology, 1–20.
Stanley, J. (2011). Know how. Oxford: OUP.
Google Scholar
Stanley, J., & Williamson, T. (2017). Skill. Nous, 51(4), 713–726.
Google Scholar
Stengel, R. F. (1994). Optimal control and estimation. North Chelmsford: Courier Corporation.
Google Scholar
Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.
Google Scholar
Todorov, E. (2005). Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation, 17(5), 1084–1108.
Google Scholar
Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235.
Google Scholar
Weiler, J., Gribble, P. L., & Pruszynski, J. A. (2019). Spinal stretch reflexes support efficient hand control. Nature Neuroscience, 22(4), 529–533.
Google Scholar
Wheeler, M. (2005). Friends reunited? Evolutionary robotics and representational explanation. Artificial Life, 11(1–2), 215–231.
Google Scholar
Wheeler, M., & Clark, A. (1999). Genic representation: Reconciling content and causal complexity. The British Journal for the Philosophy of Science, 50(1), 103–135.
Google Scholar
Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1, 209–216. https://doi.org/10.1016/S1364-6613(97)01070-X.
Article
Google Scholar
Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329. https://doi.org/10.1016/S0893-6080(98)00066-5.
Article
Google Scholar
Woodward, J. (2010). Causation in biology: Stability, specificity, and the choice of levels of explanation. Biology & Philosophy, 25(3), 287–318.
Google Scholar
Zalta, E. N. (2001). Fregean senses, modes of presentation, and concepts. Philosophical Perspectives, 15, 335–359.
Google Scholar