Allori, V. (2015). Primitive ontology in a nutshell. International Journal of Quantum Foundations, 1(2), 107–122.
Google Scholar
Ammon, M., & Erdmenger, J. (2015). Gauge/gravity duality: Foundations and applications. Cambridge: Cambridge University Press.
Book
Google Scholar
Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49(2), 91–94.
Article
Google Scholar
Baker, D. J. (2016). The philosophy of quantum field theory. Oxford Handbooks Online. Retrieved 14 May 2020. https://doi.org/10.1093/oxfordhb/9780199935314.013.33.
Balasubramanian, V., & Ross, S. F. (2000). Holographic particle detection. Physical Review D, 61(4), 044007.
Article
Google Scholar
Banks, T., Douglas, M. R., Horowitz, G. T., & Martinec, E. (1998). AdS dynamics from conformal field theory. URL https://arxiv.org/abs/hep-th/9808016.
Baytaş, B., Bianchi, E., & Yokomizo, N. (2018). Gluing polyhedra with entanglement in loop quantum gravity. Physical Review D, 98(2), 026001.
Article
Google Scholar
Bell, J. S. (2001). The theory of local beables. In M. Bell, K. Gottfried, & M. Veltman (Eds.), John S. Bell on the foundations of quantum mechanics (pp. 50–60). Singapore: WORLD SCIENTIFIC.
Chapter
Google Scholar
Bianchi, E., Doná, P., & Speziale, S. (2011). Polyhedra in loop quantum gravity. Physical Review D, 83(4), 044035.
Article
Google Scholar
Brown, A. R., & Susskind, L. (2018). Second law of quantum complexity. Physical Review D, 97(8), 086015.
Article
Google Scholar
Butterfield, J., de Haro, S., & Mayerson, D. R. (2016). Conceptual aspects of gauge/gravity duality. Foundations of Physics, 46(11), 1381–1425.
Article
Google Scholar
Callan, C. G., Friedan, D., Martinec, E. J., & Perry, M. J. (1985). Strings in background fields. Nuclear Physics B, 262(4), 593–609. https://doi.org/10.1016/0550-3213(85)90506-1. ISSN 0550-3213.
Article
Google Scholar
Calosi, C. (2014). Quantum mechanics and priority monism. Synthese, 191(5), 915–928.
Article
Google Scholar
Cao, C. J., Carroll, S. M., & Michalakis, S. (2017). Space from Hilbert space: Recovering geometry from bulk entanglement. Physical Review D, 95(2), 024031. https://doi.org/10.1103/PhysRevD.95.024031.
Article
Google Scholar
Casini, H., Huerta, M., & Rosabal, J. A. (2014). Remarks on entanglement entropy for gauge fields. Physical Review D, 89(8), 085012.
Article
Google Scholar
Chirco, G., Oriti, D., & Zhang, M. (2018). Group field theory and tensor networks: Towards a Ryu–Takayanagi formula in full quantum gravity. Classical and Quantum Gravity, 35(11), 115011.
Article
Google Scholar
Clifton, R., & Halvorson, H. (2001). Entanglement and open systems in algebraic quantum field theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 32(1), 1–31. https://doi.org/10.1016/S1355-2198(00)00033-2. ISSN 1355-2198.
Article
Google Scholar
Darby, G. (2009). Lewis’s worldmate relation and the apparent failure of Humean supervenience. Dialectica, 63(2), 195–204.
Article
Google Scholar
David Mermin, N. (1998a). The Ithaca interpretation of quantum mechanics. Pramana, 51(5), 549–565. https://doi.org/10.1007/BF02827447. ISSN 0973-7111.
Article
Google Scholar
David Mermin, N. (1998b). What is quantum mechanics trying to tell us? American Journal of Physics, 66(9), 753–767. https://doi.org/10.1119/1.18955. ISSN 0002-9505.
Article
Google Scholar
de Haro, S. (2017). Dualities and emergent gravity: Gauge/gravity duality. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 59, 109–125.
Article
Google Scholar
Delcamp, C., Dittrich, B., & Riello, A. (2016). On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity. Journal of High Energy Physics, 2016(11), 102.
Article
Google Scholar
Dieks, D. (2001). Space and time in particle and field physics. Spacetime, Fields and Understanding: Persepectives on Quantum Field, 32(2), 217–241. https://doi.org/10.1016/S1355-2198(01)00004-1. ISSN 1355-2198.
Article
Google Scholar
Dürr, D., Goldstein, S., & Zanghi, N. (2018). Quantum motion on shape space and the gauge dependent emergence of dynamics and probability in absolute space and time. arXiv:1808.06844.
Earman, J. (2015). Some puzzles and unresolved issues about quantum entanglement. Erkenntnis, 80(2), 303–337.
Article
Google Scholar
Egg, M. (2013). Delayed-choice experiments and the metaphysics of entanglement. Foundations of Physics, 43(9), 1124–1135. https://doi.org/10.1007/s10701-013-9734-4. ISSN 1572-9516.
Article
Google Scholar
Esfeld, M. (2004). Quantum entanglement and a metaphysics of relations. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 35(4), 601–617.
Article
Google Scholar
Esfeld, M. (2014). Quantum Humeanism, or: Physicalism without properties. The Philosophical Quarterly, 64(256), 453–470.
Article
Google Scholar
Esfeld, M. (2019). Against the disappearance of spacetime in quantum gravity. Synthese,. https://doi.org/10.1007/s11229-019-02168-y. ISSN 1573-0964.
Article
Google Scholar
Esfeld, M. (2020). A proposal for a minimalist ontology. Synthese, 197(5), 1889–1905. https://doi.org/10.1007/s11229-017-1426-8.
Article
Google Scholar
Esfeld, M., & Deckert, D.-A. (2017). A minimalist ontology of the natural world. New York: Routledge.
Book
Google Scholar
Faulkner, T., Guica, M., Hartman, T., Myers, R. C., & Van Raamsdonk, M. (2014). Gravitation from entanglement in holographic CFTs. Journal of High Energy Physics, 2014(3), 51.
Article
Google Scholar
Glick, D. (2019). Timelike entanglement for delayed-choice entanglement swapping. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics.,. https://doi.org/10.1016/j.shpsb.2019.06.001. ISSN 1355-2198.
Article
Google Scholar
Glick, D., & Darby, G. (2019). In defense of the metaphysics of entanglement. In D. Glick, G. Darby, & A. Marmodoro (Eds.), The foundation of reality: Fundamentality, space, and time. Oxford: Oxford University Press.
Google Scholar
Hagar, A., & Hemmo, M. (2013). The primacy of geometry. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 357–364. https://doi.org/10.1016/j.shpsb.2013.01.003. ISSN 1355-2198.
Article
Google Scholar
Halvorson, H., & Clifton, R. (2000). Generic Bell correlation between arbitrary local algebras in quantum field theory. Journal of Mathematical Physics, 41(4), 1711–1717. https://doi.org/10.1063/1.533253. ISSN 0022-2488.
Article
Google Scholar
Han, M., & Hung, L.-Y. (2017). Loop quantum gravity, exact holographic mapping, and holographic entanglement entropy. Physical Review D, 95(2), 024011.
Article
Google Scholar
Healey, R. (2012). Quantum theory: A pragmatist approach. The British Journal for the Philosophy of Science, 63(4), 729–771. https://doi.org/10.1093/bjps/axr054. ISSN 0007-0882.
Article
Google Scholar
Howard, D. (1989). Holism, separability, and the metaphysical implications of the Bell experiments. In J. T. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory (pp. 224–253). Notre Dame: University of Notre Dame Press.
Google Scholar
Huggett, N. (2017). Target space is not equal to space. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 59, 81–88.
Article
Google Scholar
Huggett, N., & Vistarini, T. (2015). Deriving general relativity from string theory. Philosophy of Science, 82(5), 1163–1174.
Article
Google Scholar
Huggett, N., & Wüthrich, C. (2013). Emergent spacetime and empirical (in)coherence. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 276–285.
Article
Google Scholar
Ismael, J., & Schaffer, J. (2016). Quantum holism: Nonseparability as common ground. Synthese,. https://doi.org/10.1007/s11229-016-1201-2.
Article
Google Scholar
Jaksland, R. (2019). The multiple realizability of general relativity in quantum gravity. Synthese,. https://doi.org/10.1007/s11229-019-02382-8. ISSN 1573-0964.
Article
Google Scholar
Ladyman, J., Linnebo, Ø., & Bigaj, T. (2013). Entanglement and non-factorizability. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 215–221.
Article
Google Scholar
Lam, V. (2013). The entanglement structure of quantum field systems. International Studies in the Philosophy of Science, 27(1), 59–72. https://doi.org/10.1080/02698595.2013.783976. ISSN 0269-8595.
Article
Google Scholar
Lam, V., & Esfeld, M. (2013). A dilemma for the emergence of spacetime in canonical quantum gravity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 286–293.
Article
Google Scholar
Lam, V., & Wüthrich, C. (2018). Spacetime is as spacetime does. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics.,. https://doi.org/10.1016/j.shpsb.2018.04.003. ISSN 1355-2198.
Article
Google Scholar
Lashkari, N., McDermott, M. B., & Van Raamsdonk, M. (2014). Gravitational dynamics from entanglement “thermodynamics”. Journal of High Energy Physics, 2014(4), 195.
Article
Google Scholar
Lewis, D. (1986). On the plurality of worlds (Vol. 97). Hoboken: Blackwell Publishers.
Google Scholar
Lewis, D. (1994). Humean supervenience debugged. Mind, 103(412), 473–490.
Article
Google Scholar
Loewer, B. (1996). Humean supervenience. Philosophical Topics, 24(1), 101–127.
Article
Google Scholar
Maldacena, J., Shenker, S. H., & Stanford, D. (2016). A bound on chaos. Journal of High Energy Physics, 2016(8), 106.
Article
Google Scholar
Maldacena, J., & Susskind, L. (2013). Cool horizons for entangled black holes. Fortschritte der Physik, 61(9), 781–811.
Article
Google Scholar
Maudlin, T. (2007a). Completeness, supervenience and ontology. Journal of Physics A: Mathematical and Theoretical, 40(12), 3151.
Article
Google Scholar
Maudlin, T. (2007b). The metaphysics within physics. Oxford: Oxford University Press.
Book
Google Scholar
Miller, E. (2014). Quantum entanglement, Bohmian mechanics, and Humean supervenience. Australasian Journal of Philosophy, 92(3), 567–583.
Article
Google Scholar
Mintert, F., Carvalho, A. R. R., Kuś, M., & Buchleitner, A. (2005). Measures and dynamics of entangled states. Physics Reports, 415(4), 207–259. https://doi.org/10.1016/j.physrep.2005.04.006. ISSN 0370-1573.
Article
Google Scholar
Morganti, M. (2009). Ontological priority, fundamentality and monism. Dialectica, 63(3), 271–288.
Article
Google Scholar
Oriti, D. (Ed.). (2009). Approaches to quantum gravity: Toward a new understanding of space, time and matter. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511575549. ISBN: 978-0-521-86045-1.
Book
Google Scholar
Percival, P. (2013). Branching of possible worlds. Synthese, 190(18), 4261–4291. ISSN 00397857, 15730964.
Article
Google Scholar
Raasakka, M. (2017). Spacetime-free approach to quantum theory and effective spacetime structure. SIGMA, 13, 006.
Google Scholar
Rangamani, M., & Takayanagi, T. (2017). Holographic entanglement entropy. Cham: Springer.
Book
Google Scholar
Redhead, M. (1995). More ado about nothing. Foundations of Physics, 25(1), 123–137. https://doi.org/10.1007/BF02054660. ISSN 1572-9516.
Article
Google Scholar
Rickles, D. (2013). AdS/CFT duality and the emergence of spacetime. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 312–320.
Article
Google Scholar
Rovelli, C., & Speziale, S. (2010). Geometry of loop quantum gravity on a graph. Physical Review D, 82(4), 044018.
Article
Google Scholar
Ruetsche, L. (2012a). Philosophical aspects of quantum field theory: I. Philosophy Compass, 7(8), 559–570.
Article
Google Scholar
Ruetsche, L. (2012b). Philosophical aspects of quantum field theory: II. Philosophy Compass, 7(8), 571–584.
Article
Google Scholar
Ryu, S., & Takayanagi, T. (2006). Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. Physical Review Letters, 96(18), 181602.
Article
Google Scholar
Saunders, S. (2006). Are quantum particles objects? Analysis, 66(289), 52–63.
Article
Google Scholar
Schaffer, J. (2010). Monism: The priority of the whole. The Philosophical Review, 119(1), 31–76.
Article
Google Scholar
Seevinck, M. (2006). The quantum world is not built up from correlations. Foundations of Physics, 36(10), 1573–1586. https://doi.org/10.1007/s10701-006-9073-9. ISSN 1572-9516.
Article
Google Scholar
Skyrms, B. (1976). Possible worlds, physics and metaphysics. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 30(5), 323–332. ISSN 00318116, 15730883.
Article
Google Scholar
Smolin, L. (2016). Holographic relations in loop quantum gravity. arxiv:1608.02932.
Sorkin, R. D., & Yazdi, Y. K. (2018). Entanglement entropy in causal set theory. Classical and Quantum Gravity, 35(7), 074004.
Article
Google Scholar
Srednicki, M. (1993). Entropy and area. Physical Review Letters, 71(5), 666–669.
Article
Google Scholar
Summers, S. J., & Werner, R. (1987). Maximal violation of Bell’s inequalities is generic in quantum field theory. Communications in Mathematical Physics, 110(2), 247–259. https://doi.org/10.1007/BF01207366. ISSN 1432-0916.
Article
Google Scholar
Susskind, L. (2017). Dear Qubitzers, GR=QM. arxiv:1708.03040.
Susskind, L. (2018). Why do things fall?arXiv:1802.01198.
Swanson, N. (2017). A philosopher’s guide to the foundations of quantum field theory. Philosophy Compass, 12(5), e12414. https://doi.org/10.1111/phc3.12414. ISSN 1747-9991.
Article
Google Scholar
Swanson, N. (2019). How to be a relativistic spacetime state realist. British Journal for the Philosophy of Science,. https://doi.org/10.1093/bjps/axy041.
Article
Google Scholar
Swingle, B, & Van Raamsdonk, M. (2014). Universality of gravity from entanglement. arXiv:1405.2933v1.
Teh, N. J. (2013). Holography and emergence. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 300–311.
Article
Google Scholar
Teller, P. (1986). Relational holism and quantum mechanics. The British Journal for the Philosophy of Science, 37(1), 71–81.
Article
Google Scholar
Timpson, C. G., & Brown, H. R. (2010). Building with quantum correlations. Quantum Information Processing, 9(2), 307–320. https://doi.org/10.1007/s11128-010-0173-2. ISSN 1573-1332.
Article
Google Scholar
Unruh, W. G. (1976). Notes on black-hole evaporation. Physical Review D, 14(4), 870–892.
Article
Google Scholar
Valente, G. (2010). Can entanglement be destroyed by any local operation in relativistic quantum field theory? Philosophy of Science, 77(5), 1029–1041. https://doi.org/10.1086/656547. ISSN 00318248, 1539767X.
Article
Google Scholar
Van Raamsdonk, M. (2010b). Comments on quantum gravity and entanglement. arxiv:0907.2939v2.
Van Raamsdonk, M. (2010a). Building up spacetime with quantum entanglement. General Relativity and Gravitation, 42(10), 2323–2329.
Article
Google Scholar
Venugopalan, A., Kumar, D., & Ghosh, R. (1995). Environment-induced decoherence II. Effect of decoherence on Bell’s inequality for an EPR pair. Physica A: Statistical Mechanics and its Applications, 220(3), 576–584. https://doi.org/10.1016/0378-4371(95)00183-8. ISSN 0378-4371.
Article
Google Scholar
Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4), 29.
Article
Google Scholar
Wallace, D. (2018). Lessons from realistic physics for the metaphysics of quantum theory. Synthese,. https://doi.org/10.1007/s11229-018-1706-y. ISSN 1573-0964.
Article
Google Scholar
Wallace, D., & Timpson, C. G. (2010). Quantum mechanics on spacetime I: Spacetime state realism. The British Journal for the Philosophy of Science, 61(4), 697–727.
Article
Google Scholar
Wolf, M. M., Verstraete, F., Hastings, M. B., & Ignacio Cirac, J. (2008). Area laws in quantum systems: Mutual information and correlations. Physical Review Letters, 100(7), 070502.
Article
Google Scholar
Wüthrich, C. (2012). The structure of causal sets. Journal for General Philosophy of Science, 43(2), 223–241.
Article
Google Scholar
Wüthrich, C. (2017). Raiders of the lost spacetime. In D. Lehmkuhl, G. Schiemann, & E. Scholz (Eds.), Towards a theory of spacetime theories (pp. 297–335). New York: Springer.
Chapter
Google Scholar
Wüthrich, C. (2019). When the actual world is not even possible. In D. Glick, G. Darby, & A. Marmodoro (Eds.), The foundation of reality: Fundamentality, space, and time. Oxford: Oxford University Press.
Google Scholar
Yu, T., & Eberly, J. H. (2009). Sudden death of entanglement. Science, 323(5914), 598. https://doi.org/10.1126/science.1167343.
Article
Google Scholar