Advertisement

Synthese

pp 1–30 | Cite as

Charting the landscape of interpretation, theory rivalry, and underdetermination in quantum mechanics

  • Pablo AcuñaEmail author
Article
  • 111 Downloads

Abstract

When we speak about different interpretations of quantum mechanics it is suggested that there is one single quantum theory that can be interpreted in different ways. However, after an explicit characterization of what it is to interpret quantum mechanics, the right diagnosis is that we have a case of predictively equivalent rival theories. I extract some lessons regarding the resulting underdetermination of theory choice. Issues about theoretical identity, theoretical and methodological pluralism, and the prospects for a realist stance towards quantum theory can be properly addressed once we recognize that interpretations of quantum mechanics are rival theories.

Keywords

Quantum mechanics Empirical equivalence Underdetermination Pluralism Theory identity 

Notes

Acknowledgements

I thank four anonymous referees for their helpful comments on an earlier version of this work. I thank Angelo Bassi, Max Maaneli Derakshani and Francesca Vidotto for bibliographic references. The first version of this article was written during my stay as a Visiting Fellow in the Center for Philosophy of Science, University of Pittsburgh. I thank its Director Edouard Machery and everybody in the Center for their hospitality, and James Fraser and everyone in the reading group for their helpful comments on the first draft. This work was financially supported by FONDECYT Grant 11170608.

References

  1. Acuña, P. (2016). Inertial trajectories in de Broglie–Bohm quantum theory: An unexpected problem. International Studies in the Philosophy of Science, 30, 201–230.CrossRefGoogle Scholar
  2. Acuña, P., & Dieks, D. (2014). Another look at empirical equivalence and underdetermination of theory choice. European Journal for Philosophy of Science, 4, 153–180.CrossRefGoogle Scholar
  3. Aguirre, A., & Tegmark, M. (2011). Born in an infinite universe: A cosmological interpretation of quantum mechanics. Physical Review D, 84, 105002.CrossRefGoogle Scholar
  4. Albert, D. (1992). Quantum mechanics and experience. Cambridge: Harvard University Press.Google Scholar
  5. Barrett, J. (1998). The Bare theory and how to fix it. In D. Dieks & P. Vermaas (Eds.), The modal interpretation of quantum mechanics (pp. 319–336). Dordrecht: Springer.CrossRefGoogle Scholar
  6. Bassi, A., Lochan, K., Satin, S., Singh, T., & Ulbricht, H. (2013). Models of wave-function collapse, underlying theories, and experimental tests. Reviews of Modern Physics, 85, 471–527.CrossRefGoogle Scholar
  7. Bell, J. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38, 447–452.CrossRefGoogle Scholar
  8. Belousek, D. (2005). Underdetermination, realism, and theory appraisal: An epistemological reflection on quantum mechanics. Foundations of Physics, 35, 669–695.CrossRefGoogle Scholar
  9. Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of “hidden” variables I–II. Physical Review, 85, 166–193.CrossRefGoogle Scholar
  10. Bohm, D., & Hiley, B. (1993). The undivided universe: An ontological interpretation of quantum theory. New York: Routledge.Google Scholar
  11. Boyd, R. (1970). Realism, underdetermination, and a causal theory of evidence. Noûs, 7, 1–12.CrossRefGoogle Scholar
  12. Bub, J. (1997). Interpreting the quantum world. Cambridge: Cambridge University Press.Google Scholar
  13. Bub, J. (2010). Von Neumann’s no ‘no hidden variables’ proof: A re-appraisal. Foundations of Physics, 40, 1333–1340.CrossRefGoogle Scholar
  14. Bub, J., Clifton, R., & Monton, B. (1998). The Bare theory has no clothes. Quantum measurement: Beyond paradox (pp. 32–51). Minneapolis: University of Minnesota Press.Google Scholar
  15. Bueno, O. (1999). What is structural empiricism? Scientific change in an empiricist setting. Erkenntnis, 50, 55–81.CrossRefGoogle Scholar
  16. Bueno, O. (2011). Structural empiricism, again. In A. Bokulich & P. Bokulich (Eds.), Scientific structuralism (pp. 81–104). Dordrecht: Springer.Google Scholar
  17. Busch, P., Grabowski, M., & Lahti, P. (1995). Operational quantum physics. Berlin: Springer.Google Scholar
  18. Coffey, K. (2014). Theoretical equivalence as interpretative equivalence. The British Journal for the Philosophy of Science, 65, 821–844.CrossRefGoogle Scholar
  19. Cordero, A. (2001). Realism and underdetermination: Some clues from the practices-up. Philosophy of Science, 68, 301–312.CrossRefGoogle Scholar
  20. Cushing, J. (1995). Quantum tunneling times: A crucial test for the causal program. Foundations of Physics, 25, 269–280.CrossRefGoogle Scholar
  21. Das, S., & Dürr, D. (2019). Arrival time distributions of spin-1/2 particles. Scientific Reports, 9, 2242.CrossRefGoogle Scholar
  22. Daumer, M., Dürr, D., Goldstein, S., & Zanghì, N. (1997). Naive realism about operators. Erkenntnis, 45, 379–397.Google Scholar
  23. Dieks, D. (2017a). Underdetermination, realism and objectivity in quantum mechanics. In E. Agazzi (Ed.), Varieties of scientific realism: Objectivity and truth in science (pp. 295–314). Cham: Springer.CrossRefGoogle Scholar
  24. Dieks, D. (2017b). Von Neumann’s impossibility proof: mathematics in the service of rhetorics. Studies in History and Philosophy of Modern Physics.  https://doi.org/10.1016/j.shpsb.2017.01.008.Google Scholar
  25. Dürr, D., Goldstein, S., Münch-Berndl, K., & Zanghì, N. (1999). Hypersurface Bohm-Dirac Models. Physical Review A, 60, 2729.Google Scholar
  26. Dürr, D., Goldstein, S., Norsen, T., Struyve, W., & Zanghì, N. (2014). Can Bohmian mechanics be made relativistic? Proceedings of the Royal Society A, 470, 20130699.CrossRefGoogle Scholar
  27. Dürr, D., Goldstein, S., & Zanghi, N. (1997). Bohmian mechanics and the meaning of the wave function. In R. Cohen, M. Horne, & J. Stachel (Eds.), Experimental metaphysics: Quantum mechanical studies for Abner Shimony (pp. 25–38). Dordrecht: Kluwer Academic Publisher.Google Scholar
  28. Dürr, D., Goldstein, S., & Zanghì, N. (1996). Bohmian mechanics as the foundations of quantum mechanics. In J. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: An appraisal (pp. 21–44). Dordrecht: Springer.CrossRefGoogle Scholar
  29. Dürr, D., Goldstein, S., & Zanghì, N. (2004). Quantum equilibrium and the role of operators as observables in quantum theory. Journal of Statistical Physics, 116, 959–1055.CrossRefGoogle Scholar
  30. Dürr, D., & Teufel, S. (2009). Bohmian mechanics: The physics and mathematics of quantum theory. Berlin: Springer.Google Scholar
  31. Einstein, A. (1954). What is the theory of relativity? Ideas and opinions (pp. 227–232). New York: Crown Publishers.Google Scholar
  32. Esfeld, M., Hubert, M., Lazarovici, M., & Dürr, D. (2014). The ontology of Bohmian mechanics. The British Journal for the Philosophy of Science, 65, 773–796.CrossRefGoogle Scholar
  33. Flores, F. (1999). Einstein’s theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science, 13, 123–134.CrossRefGoogle Scholar
  34. French, S., & Ladyman, J. (2003). Remodelling structural realism: Quantum physics and the metaphysics of structure. Synthese, 136, 31–56.CrossRefGoogle Scholar
  35. French, S., & Ladyman, J. (2011). In defence of ontic structural realism. In A. Bokulich & P. Bokulich (Eds.), Scientific structuralism (pp. 25–42). Dordrecht: Springer.Google Scholar
  36. Fuchs, C. (2017). On participatory realism. In I. Durham & D. Rickles (Eds.), Information and interaction: Eddington, Wheeler, and the limits of knowledge (pp. 113–134). Dordrecht: Springer.CrossRefGoogle Scholar
  37. Fuchs, C., Mermin, D., & Schack, R. (2014). An introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics, 82, 749–754.CrossRefGoogle Scholar
  38. Ghirardi, G. (2016). Collapse theories. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 Edition). https://plato.stanford.edu/archives/fall2018/entries/qm-collapse.
  39. Giulini, D. (2016). Superselection rules. In H. Antmanspacher & U. Müller-Herold (Eds.), From chemistry to consciousness: The legacy of Hans Primas (pp. 45–70). Dordrecht: Springer.CrossRefGoogle Scholar
  40. Glymour, C. (1970). Theoretical realism and theoretical equivalence. In R. Buck & R. Cohen (Eds.), Boston studies in philosophy of science VII (pp. 275–288). Dordrecht: Reidel.Google Scholar
  41. Hartle, J. B. (1991). The quantum mechanics of cosmology. In S. Coleman, J. B. Hartle, T. Piran, & S. Weinberg (Eds.), Quantum cosmology and baby universes: Proceedings of 7th Jerusalem Winter School (pp. 67–158). Singapore: World Scientific.Google Scholar
  42. Healey, R. (1989). The philosophy of quantum mechanics: An interactive interpretation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. Healey, R. (2012). Quantum theory: A pragmatist approach. The British Journal for the Philosophy of Science, 63, 729–771.CrossRefGoogle Scholar
  44. Hempel, C. (1965). Aspects of Scientific explanation. New York: Free Press.Google Scholar
  45. Holland, P. (1993). The quantum theory of motion. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Jammer, M. (1974). Philosophy of quantum mechanics: The interpretations of quantum mechanics in historical perspective. New York: Wiley.Google Scholar
  47. Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. Salmon (Eds.), Minnesota studies in the philosophy of science (Vol. XIII, pp. 410–503). Minneapolis: University of Minnesota Press.Google Scholar
  48. Ladyman, J., & Ross, D. (2007). Everything must go: Metaphysics naturalized. Oxford: Oxford University Press.CrossRefGoogle Scholar
  49. Laudan, L. (1981). A confutation of convergent realism. Philosophy of Science, 48, 19–49.CrossRefGoogle Scholar
  50. Laudan, L., & Leplin, J. (1991). Empirical equivalence and underdetermination. The Journal of Philosohy, 88, 449–472.CrossRefGoogle Scholar
  51. Leavens, C. (1996). The ‘tunneling time problem’ for electrons. In J. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: An appraisal (pp. 11–130). Dordrecht: Springer.Google Scholar
  52. Leavens, C. R. (1998). Time of arrival in quantum and Bohmian mechanics. Physical Review A, 58, 840–847.CrossRefGoogle Scholar
  53. Leavens, C., & Aers, G. (1993). Bohmian trajectories and the tunneling time problem. In R. Wiesendanger & J. Güntherodt (Eds.), Scanning tunneling microscopy III (pp. 105–140). Dordrecht: Springer.CrossRefGoogle Scholar
  54. Lienert, M., Petrat, S., & Tumulka, R. (2017). Multi-time wave functions. Journal of Physics: Conference Series, 880, 012006.Google Scholar
  55. Maudlin, T. (2008). Non-local correlations in quantum theory: How the trick might be done. In W. L. Craig & Q. Smith (Eds.), Einstein, relativity, and absolute simultaneity (pp. 156–179). New York: Routledge.Google Scholar
  56. Maudlin, T. (2014). What bell did. Journal of Physics A, 47, 424010.CrossRefGoogle Scholar
  57. McKinnon, W. R., & Leavens, C. R. (1995). Distribution of delay times and transmission times in Bohm’s causal interpretation of quantum mechanics. Physical Review A, 51, 2748–2757.CrossRefGoogle Scholar
  58. Morganti, M. (2004). On the preferability of epistemic structural realism. Synthese, 142, 81–107.CrossRefGoogle Scholar
  59. Muga, J. G., & Leavens, C. R. (2000). Arrival time in quantum mechanics. Physics Reports, 338, 353–438.CrossRefGoogle Scholar
  60. Muller, F. A. (2015). Circumveiloped by Obscuritads: The nature of interpretation in quantum mechanics, hermeneutic circles and physical reality, with cameos of James Joyce and Jacques Derrida. In J.-Y. Béziau, D. Krause, & J. R. Becker Arenhart (Eds.), Conceptual clarifications. Tributes to Patrick Suppes (19222014) (pp. 107–136). College Publications.Google Scholar
  61. Peres, A. (1993). Quantum theory: Concepts and methods. Dordrecht: Kluwer Academic Publishers.Google Scholar
  62. Pinto-Neto, N., & Fabris, J. C. (2013). Quantum gravity from the de Broglie–Bohm perspective. Classical and Quantum Gravity, 30, 143001.CrossRefGoogle Scholar
  63. Psillos, S. (1999). Scientific realism: How science tracks truth. London: Routledge.Google Scholar
  64. Roberts, B. (2018). Observables, disassembled. Studies in History and Philosophy of Modern Physics, 63, 150–162.CrossRefGoogle Scholar
  65. Ruetsche, L. (2011). Interpreting quantum theories. Oxford: Oxford University Press.CrossRefGoogle Scholar
  66. Ruetsche, L. (2015). QM. In L. Sklar (Ed.), Physical theory: Method and interpretation (pp. 229–268). Oxford: Oxford University Press.Google Scholar
  67. Saatsi, J. (2017). Scientific realism meets metaphysics of quantum mechanics. In A. Cordero (Ed.), Philosophers think about quantum theory. Dordrecht: Springer.Google Scholar
  68. Salmon, W. (1989). Four decades of scientific explanation. In P. Kitcher & W. Salmon (Eds.), Minnesota studies in the philosophy of science (Vol. XIII, pp. 3–219). Minneapolis: University of Minnesota Press.Google Scholar
  69. Tovar Falciano, F., Pinto-Neto, N., & Struyve, W. (2015). Wheeler–DeWitt quantization and singularities. Physical Review D, 91, 043524.CrossRefGoogle Scholar
  70. Valentini, A., & Westman, H. (2005). Dynamical origin of quantum probabilities. Proceeding of the Royal Society A, 461, 253–272.CrossRefGoogle Scholar
  71. van Camp, W. (2011). Principle theories, constructive theories, and explanation in modern physics. Studies in History and Philosophy of Modern Physics, 42, 23–31.CrossRefGoogle Scholar
  72. van Fraassen, B. (1980). The scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  73. von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.Google Scholar
  74. Wallace, D. (2008). Philosophy of quantum mechanics. In D. Rickles (Ed.), The Ashgate companion to contemporary philosophy of physics (pp. 16–98). New York: Routledge.Google Scholar
  75. Wallace, D. (2016). What is orthodox quantum mechanics? Retrieved from https://arxiv.org/abs/1604.05973 (forthcoming).
  76. Weatherall, J. O. (2018). Theoretical equivalence in physics. arXiv:1810.08192 (unpublished manuscript).
  77. Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43, 99–124.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de FilosofíaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations