Advertisement

Synthese

pp 1–19 | Cite as

Are visuomotor representations cognitively penetrable? Biasing action-guiding vision

  • Josefa ToribioEmail author
S.I.: Between Vision and Action

Abstract

Is action-guiding vision cognitively penetrable? More specifically, is the visual processing that guides our goal-directed actions sensitive to semantic information from cognitive states? This paper critically examines a recent family of arguments whose aim is to challenge a widespread and influential view in philosophy and cognitive science: the view that action-guiding vision is cognitively impenetrable. I argue, in response, that while there may very well be top–down causal influences on action-guiding vision, they should not be taken to be an instance of cognitive penetration. Assuming otherwise is to assign a computational role to the influencing states that they cannot perform. Although questions about cognitive penetrability are ultimately empirical, the issues addressed in this paper are largely philosophical. The discussion here highlights an important set of considerations that help better understand the relations between cognition, vision, and action.

Keywords

Action-guiding vision Cognitive penetrability Visuomotor representations Determination Bias 

Notes

Acknowledgements

Research for this paper was supported by the MINECO (Ministerio de Economía y Competitividad) via research Grant MCINN FFI2014-51811, by the EC, Project: 675415—DIAPHORA, H2020-MSCA-ITN-2015, and by AGAUR (Agència de Gestió d’Ajuts Universitaris i de Recerca) via research Grant 2017-SGR-63.

References

  1. Aglioti, S., Goodale, M., & DeSouza, J. F. X. (1995). Size contrast illusions deceive the eye but not the hand. Current Biology, 5, 679–685.CrossRefGoogle Scholar
  2. Arstila, V. (2016). Perceptual learning explains two candidates for cognitive penetration. Erkenntnis, 81(6), 1151–1172.CrossRefGoogle Scholar
  3. Binkosfski, F., & Buxbaum, L. J. (2013). Two action systems in the human brain. Brain and Language, 127(2), 222–229.CrossRefGoogle Scholar
  4. Borghi, A. M., & Riggio, L. (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience, 9(351), 32–47.  https://doi.org/10.3389/fnhum.2015.00351.Google Scholar
  5. Briscoe, R. (2008). Another look at the two visual systems hypothesis. Journal of Conscious Studies, 15, 35–62.Google Scholar
  6. Brogaard, B. (2011a). Are there unconscious perceptual processes? Consciousness and Cognition, 20, 449–463.CrossRefGoogle Scholar
  7. Brogaard, B. (2011b). Conscious vision for action versus unconscious vision for action? Cognitive Science, 35(6), 1076–1104.CrossRefGoogle Scholar
  8. Brogaard, B. (2013). Phenomenal seemings and sensible dogmatism. In C. Tucker (Ed.), Seemings and justification: New essays on dogmatism and phenomenal conservatism (pp. 270–289). Oxford: OUP.CrossRefGoogle Scholar
  9. Brogaard, B. (2014). Seeing as a mon-experiential mental state: The case from synesthesia and visual imagery. In R. Brown (Ed.), Consciousness inside and out: Phenomenology, neuroscience, and the nature of experience (pp. 377–394). Dordrecht: Springer.CrossRefGoogle Scholar
  10. Burnston, D. (2016). Cognitive penetration and the cognition–perception interface. Synthese.  https://doi.org/10.1007/s11229-016-1116-y.Google Scholar
  11. Burnston, D. (2017). Interface problems in the explanation of action. Philosophical Explorations, 20(2), 242–258.CrossRefGoogle Scholar
  12. Burnston, D., & Cohen, J. (2015). Perceptual integration, modularity, and cognitive penetration. In J. Zeimbekis & A. Raftopoulos (Eds.), The cognitive penetrability of perception: New philosophical perspectives. Oxford: OUP.Google Scholar
  13. Butterfill, S. A., & Sinigaglia, C. (2014). Intention and motor representation in purposive action. Philosophy and Phenomenological Research, 88(1), 119–145.CrossRefGoogle Scholar
  14. Chinellato, E., & del Pobil, A. (2016). The visual neuroscience of robotic grasping. Achieving sensorimotor skills through dorsal-ventral stream integration. Berlin: Springer.CrossRefGoogle Scholar
  15. Christensen, A., Borchers, S., & Himmelbach, M. (2013). Effects of pictorial cues on reaching depend on the distinctiveness of target objects. PLOS One, 8(1), e54230.  https://doi.org/10.1371/journal.pone.0054230.CrossRefGoogle Scholar
  16. Clark, A. (2001). Visual experience and motor action: Are the bonds too tight? Philosophical Review, 110(4), 495–519.CrossRefGoogle Scholar
  17. Clark, A. (2009). Perception, action, and experience: Unraveling the golden braid. Neuropsychologia, 47(6), 1460–1468.CrossRefGoogle Scholar
  18. Connolly, K. (2014). Perceptual learning and the contents of perception. Erkenntnis, 79(6), 1407–1418.CrossRefGoogle Scholar
  19. Culham, J. C., Danckert, S. L., DeSouza, J. F. X., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153, 180–189.CrossRefGoogle Scholar
  20. Deroy, O. (2015). Multisensory perception and cognitive penetration. In J. Zeimbekis & A. Raftopoulos (Eds.), The cognitive penetrability of perception: New philosophical perspectives. Oxford: OUP.Google Scholar
  21. Dijkerman, H. C., McIntosh, R. D., Schindler, I., Nijboer, T. C. W., & Milner, A. D. (2009). Choosing between alternative wrist postures: Action planning needs perception. Neuropsyschologia, 47, 1476–1483.CrossRefGoogle Scholar
  22. Drayson, Z. (forthcoming). Direct perception and the predictive mind. Philosophical Studies.  https://doi.org/10.1007/s11098-017-0999-x.
  23. Dretske, A. (1981). Knowledge and the flow of information. Cambridge, MA: MIT Press.Google Scholar
  24. Ellis, R., Flanagan, J., & Lederman, S. (1999). The influence of visual illusions on grasp position. Experimental Brain Research, 125, 109–114.CrossRefGoogle Scholar
  25. Ferretti, G. (2016a). Through the forest of motor representations. Consciousness and Cognition, 43, 177–196.CrossRefGoogle Scholar
  26. Ferretti, G. (2016b). Visual feeling of presence. Pacific Philosophical Quarterly, 99(S1), 112–136.Google Scholar
  27. Ferretti, G. (2016c). Pictures, action properties and motor related effects. Synthese, 193(12), 3787–3817.CrossRefGoogle Scholar
  28. Ferretti, G. (2017). Two visual systems in Molyneux Subjects. Phenomenology and the Cognitive Sciences.  https://doi.org/10.1007/s11097-017-9533-z.Google Scholar
  29. Ferretti, G. (forthcoming). The neural dynamics of seeing-in. Erkenntnis.Google Scholar
  30. Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
  31. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.CrossRefGoogle Scholar
  32. Gallese, V. (2007). The “conscious” dorsal stream: Embodied simulation and its role in space and action conscious awareness. Psyche, 13(1), 1–20.Google Scholar
  33. Goodale, M. A. (2011). Transforming vision into action. Vision Research, 51, 1567–1587.CrossRefGoogle Scholar
  34. Goodale, M. A., & Milner, A. D. (2004). Sights unseen. Oxford: OUP.Google Scholar
  35. Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154–156.CrossRefGoogle Scholar
  36. Goodale, M. A., & Wolf, M. (2009). Vision for action. In D. Dedrick & L. Trick (Eds.), Computation, cognition, and pylyshyn. Cambridge: MIT Press.Google Scholar
  37. Grill-Spector, K., Kushnir, T., Hendler, T., & Malach, R. (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nature Neuroscience, 3, 837–843.CrossRefGoogle Scholar
  38. Heck, R. (2000). Nonconceptual content and the “space of reasons”. Philosophical Review, 109(4), 483–523.CrossRefGoogle Scholar
  39. Hohwy, J. (2013). The predictive mind. Oxford: OUP.CrossRefGoogle Scholar
  40. Hohwy, J. (2017). Priors in perception: Top–down modulation, bayesian perceptual learning rate, and prediction error minimization. Consciousness and Cognition, 47, 75–85.CrossRefGoogle Scholar
  41. Jacob, P. (2005). Grasping and perceiving an object. In A. Brooks & K. Akins (Eds.), Cognition and the Brain. Cambridge: CUP.Google Scholar
  42. Jacob, P., & Jeannerod, M. (2003). Ways of seeing: The scope and limits of visual cognition. Oxford: OUP.CrossRefGoogle Scholar
  43. Jeannerod, M. (2006). Motor cognition. What actions tell the self. Oxford: OUP.CrossRefGoogle Scholar
  44. Kozuch, B. (2015). Dislocation, not dissociation: The neuroanatomical argument against visual experience driving motor action. Mind and Language, 30(5), 572–602.CrossRefGoogle Scholar
  45. Kravitz, D. J., Kadharbatcha, S., Saleem, S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Neuroscience, 12, 217–230.CrossRefGoogle Scholar
  46. Lima, C. F., Krishnan, S., & Scott, S. K. (2016). Roles of supplementary motor areas in auditory processing and auditory image. Trends in Neuroscience, 39(8), 527–542.CrossRefGoogle Scholar
  47. Lupyan, G. (2015). Cognitive penetrability of perception in the age of prediction: Predictive systems are penetrable systems. Review of Philosophy and Psychology, 6(4), 547–569.CrossRefGoogle Scholar
  48. Lyons, J. (2005). Perceptual belief and nonexperiential looks. Philosophical Perspectives, 19, 237–256.CrossRefGoogle Scholar
  49. Macpherson, F. (2012). Cognitive penetration of colour experience: Rethinking the issue in light of an indirect mechanism. Philosophy and Phenomenological Research, 84(1), 24–62.CrossRefGoogle Scholar
  50. Macpherson, F. (2015). Cognitive penetration and nonconceptual content. In J. Zeimbekis & A. Raftopoulos (Eds.), The cognitive penetrability of perception: New philosophical perspectives. Oxford: OUP.Google Scholar
  51. Macpherson, F. (2017). The relationship between cognitive penetration and predictive coding. Consciousness and Cognition, 47, 6–16.CrossRefGoogle Scholar
  52. Mahon, B., & Wu, W. (2015). Cognitive penetration of the dorsal visual stream? In J. Zeimbekis & A. Raftopoulos (Eds.), The cognitive penetrability of perception: New philosophical perspectives (pp. 200–217). Oxford: OUP.CrossRefGoogle Scholar
  53. McIntosh, R. D., & Lashleya, G. (2008). Matching boxes: Familiar size influences action programming. Neuropsychologia, 46, 2441–2444.CrossRefGoogle Scholar
  54. Milner, A. D. (2008). Conscious and unconscious visual processing in the human brain. In L. Weiskrantz & M. Davies (Eds.), Frontiers of consciousness. Oxford: OUP.Google Scholar
  55. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: OUP.Google Scholar
  56. Milner, A. D., & Goodale, M. A. (2006). The visual brain in action (2nd ed.). Oxford: OUP.CrossRefGoogle Scholar
  57. Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-visited. Neuropsychologia, 46, 774–785.CrossRefGoogle Scholar
  58. Mole, C. (2009). Illusions, demonstratives and the zombie action hypothesis. Mind, 118, 995–1011.CrossRefGoogle Scholar
  59. Mylopoulos, M., & Pacherie, E. (2017). Intentions and motor representations: The interface challenge. Review of Philosophy and Psychology, 8(2), 317–336.CrossRefGoogle Scholar
  60. Nanay, B. (2013a). Between perception and action. Oxford: OUP.CrossRefGoogle Scholar
  61. Nanay, B. (2013b). Is action-guiding vision cognitively impenetrable? In Proceedings of the 35th annual conference of the cognitive science society (CogSci 2013) (pp. 1055–1060). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  62. Norman, J. (2002). Two visual systems and two theories of perception. Behavioral and Brain Sciences, 25, 73–144.Google Scholar
  63. Pisella, L., Gréa, H., Tilikete, H. C., Vighetto, A., Desmurget, M., Rode, G., et al. (2000). An ‘automatic pilot’ for the hand in human posterior parietal cortex: Toward reinterpreting optic ataxia. Nature Neuroscience, 3, 729–736.CrossRefGoogle Scholar
  64. Pylyshyn, Z. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge: MIT Press.Google Scholar
  65. Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22, 341–365.Google Scholar
  66. Raftopoulos, A. (2001). Is perception informationally encapsulated? The issue of the theory-ladenness of perception. Cognitive Science, 25, 423–451.CrossRefGoogle Scholar
  67. Raftopoulos, A. (2005). Perceptual systems and a viable form of realism. In A. Raftopoulos (Ed.), Cognitive penetrability of perception. Nova Science: Hauppauge.Google Scholar
  68. Raftopoulos, A. (2009). Cognition and perception: How do psychology and neural science inform philosophy?. Cambridge: MIT Press.Google Scholar
  69. Raftopoulos, A. (2017). Timing time: Why early vision is cognitively impenetrable. In Proceedings of the annual meeting of the cognitive science society (COGSI, 2017) (pp. 974–979).Google Scholar
  70. Reiland, I. (2014). On experiencing high-level properties. American Philosophical Quarterly, 51, 177–187.Google Scholar
  71. Reiland, I. (2015). Experience, seemings, and evidence. Pacific Philosophical Quarterly, 96, 510–534.CrossRefGoogle Scholar
  72. Rizzolatti, G., & Matelli, M. (2003). Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research, 153, 146–157.CrossRefGoogle Scholar
  73. Rizzolatti, G., & Sinigaglia, C. (2008). Mirrors in the brain: How our minds share actions, emotions, and experience. Oxford: OUP.Google Scholar
  74. Rossetti, Y., McIntosh, R. D., Revol, P., Pisella, L., Rode, G., Danckert, J., et al. (2005). Visually guided reaching: Bilateral posterior parietal lesions cause a switch from fast visuomotor to slow cognitive control. Neuropsychologia, 43, 162–177.CrossRefGoogle Scholar
  75. Rossetti, Y., Pisella, L., & Vighetto, A. (2003). Optic ataxia revisited: Visually guided action versus immediate visuomotor control. Experimental Brain Research, 153, 171–179.CrossRefGoogle Scholar
  76. Schenk, T., & McIntosh, R. D. (2010). Do we have independent visual streams for perception and action? Cognitive Neuroscience, 1(1), 52–78.CrossRefGoogle Scholar
  77. Shepherd, J. (2017). Skilled action and the double life of intention. Philosophy and Phenomenological Research.  https://doi.org/10.1111/phpr.12433.Google Scholar
  78. Stokes, D. (2013). Cognitive penetrability of perception. Philosophy Compass, 8(7), 646–663.CrossRefGoogle Scholar
  79. Toribio, J. (2015). Visual experience: Rich but impenetrable. Synthese.  https://doi.org/10.1007/s11229-015-0889-8.Google Scholar
  80. Toribio, J. (forthcoming). Visual categorization. In B. Glenney & J. F. Pereira da Silva (Eds.) The senses and the history of philosophy. Oxford: Routledge.Google Scholar
  81. Tovée, M. J. (1994). How fast is the speed of thought? Neuronal Processing, 4(12), 1125–1127.Google Scholar
  82. Tucker, C. (2010). Why open-minded people should endorse dogmatism. Philosophical Perspectives, 24, 529–545.CrossRefGoogle Scholar
  83. Turella, L., & Lingnau, A. (2014). Neural correlates of grasping. Frontiers in Human Neuroscience.  https://doi.org/10.3389/fnhum.2014.00686.Google Scholar
  84. Wu, W. (2014). Against division: Consciousness, information and the visual systems. Mind and Language, 29(4), 383–406.CrossRefGoogle Scholar
  85. Zipoli Caiani, S., & Ferretti, G. (2017). Semantic and pragmatic integration in vision for action. Consciousness and Cognition, 48, 40–54.CrossRefGoogle Scholar
  86. Zipoli Caiani, S., & Ferretti, G. (forthcoming). Solving the interface problem without translation: The same format thesis. Pacific Philosophical Quarterly.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.ICREABarcelonaSpain
  2. 2.Department of PhilosophyUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations