Forming larger numbers
In order to be able to realise that every natural number has a successor one has to be able to form a larger number, regardless of which number is presented. Adding one to the given number is one way to form a larger number, but there are of course others. What seems to happen in the above response patterns is that children use the structure of the numeral system to form larger numbers. This is the first claim for my alternative account: children use the syntax to learn something about the domain. This claim is still compatible with the plus-one strategy, as children might learn the operation of adding one from the syntax. My second claim is that instead of making changes to the unit digit of the presented number they make changes to digits with higher place-value (i.e. further to the left), such as when they move from 500 to 600 or from a billion to 2 billion. Furthermore, in the above responses they do so even when they are unfamiliar with the number words used, as was evident in the cases of billions, trillions and googols. Given that digits are processed independently (and this is not just true for numbers that are written down), it would make sense to focus on just one of the digits, and to then pick the largest one. One for doing so would be that picking the leftmost digit guarantees that you have at the very most one carry to execute. Here, then, is a basic procedure for generating larger numbers that comes from one’s realisation that the leftmost digit indicates the largest number:
This method is guaranteed to yield a larger number in virtue of the place-value system that our (written) numeral system is based on. For the spoken numeral system it is, in languages with inversion, trickier to make sure that one has identified the right digit. With spoken numerals one also needs to pay attention to the words indicating the different base-10 values, but for numbers above 99 the leftmost written digit is usually said first.Footnote 2 So, while trickier, it is not significantly more difficult to follow this strategy for spoken numerals. Yet perhaps it is because it is more difficult for spoken numerals under 99 that in the above interview A answers 100 quadrillions of quadrillions of quadrillions to 27 quadrillion 842 trillion 520. A slightly different strategy is used, because not just the leftmost digit is increased. Instead A makes an increase from 27 to 100, thus adding a digit to the left and changing the two digits following after that. In some cases, then, a child may choose to add a digit on the lefthand side. Furthermore, the numbers mentioned may be too unfamiliar for A to know with certainty that 100 quadrillion is larger than the number mentioned by the interviewer. In such a situation repeated mention of the highest sounding numeral (seemingly meant to indicate multiplication) is a safer bet than just to mention 100 quadrillion, even though that number would also be larger. These observations thus lead to a slightly more general method (even though I will ignore the repeated use of the highest sounding numeral):
Even now, this gloss doesn’t cover all of the responses that have been given by children. A 10 year old girl responded to 120 with 900, in line with this strategy, but to 1000 with 1200 (probably uttered as ‘twelve hundred’) and to a million with a million and a hundred. At least the last response goes against the considerations of syntactic simplicity mentioned earlier, though notably the more complex response is not simply adding one. This deviating case also illustrates the fact that there is far too little data to say anything definite about the strategy being employed in answering these questions. There have been, as far as I know, no tests with numbers such as 2001 where one can see if children prefer 3001 or 2002, both syntactically equally simple answers. Nor have there been tests with numbers below 100, to see if children prefer answering to 79 with 80, 89 or something like 100. Since (more on this later) children only seem to display knowledge of the endlessness of the natural numbers when they can count to a hundred, it may well be that they follow a completely different strategy for numbers below a hundred. Yet, at the same time, what strategy they follow below 100 may not be that important: what matters for getting number concepts consistent with the successor axiom is that one has a strategy for forming ever larger numbers. If this strategy only kicks in after 100, because children already know all the numbers up to 100, then it might be that a dual account where children add 1 below 100 and go by the place-value of digits above 100 is a better fit. In short, there are still some significant gaps in our knowledge of these response patterns and the reasoning behind children’s conviction that one can always form a larger number. The current suggestion is an initial attempt at structuring the available data into a hypothesis, that then needs to be subjected to further testing. What is interesting in this alternative hypothesis is that it offers another way in which one might come to know that there is always a larger number. That this is the case has to be argued for, and it is what I turn to next.
In order to know if this is a strategy that could be used to acquire number concepts that are consistent with the successor axiom, two things need to be established. First, that this strategy can be used to learn that \(\forall x \mathbb {N}x \rightarrow \exists y(\mathbb {N}y \wedge y > x)\). Second, that this also implies that one’s number concepts are consistent with the standard formulation of the successor axiom: \(\forall x (\mathbb {N}x \rightarrow \exists y\, xPy)\). The next subsection takes up these two elements and thus argues that the current hypothesis gives a viable alternative account, though it cannot yet be established if it is also the correct account.
From forming larger numbers to consistency with the successor axiom
Let me start with the question whether the strategy of increasing the value of the leftmost digit or adding a digit on the lefthand side may be used to learn that there is another, larger, number for every natural number. Because of the fact that the numeral system is based on a place-value system this is a mathematically sound strategy for creating a larger number. Note that this hinges on the use of a place-value system: if we were to use the roman numeral system that also includes subtraction then adding a digit to the left may produce a lower number (e.g. adding I to the left of V gives us IV, which is lower). Because in our numeral system adding a digit to the left is guaranteed to generate a larger number, this is an acceptable strategy, Similarly, increasing the value of the leftmost digit is always guaranteed to generate a larger number. So as a method of generating a larger number for any number presented it is one that, regardless of how one fills in the specifics, will always work. Therefore this method can be used to show that \(\forall x \mathbb {N}x \rightarrow \exists y(\mathbb {N}y \wedge y > x)\), because we have a way of generating a y for an arbitrary x.
How might we realise that this method of increasing a number does indeed produce a larger number? After all, a philosophical account cannot just stop at noting that a method is sufficient for producing larger numbers. It also has to provide an account of a way in which one can convince oneself of the fact that the method in question always produces a larger number. It should be mentioned that children seem to realise that this is a method that always produces larger numbers. In the interviews there are some indications that they think along the lines of the above strategy and think that that will always yield an even larger number. So, if this strategy fits their thinking then it is not just a procedure that they happen to follow without being consciously aware of the implications of this construction method for the endlessness of the natural numbers. Hence, there has to be some way that the children use to get to this knowledge from the availability of the above method for increasing numbers.
Here is one way in which this can happen. Children need to learn the syntactic structure of the numeral system (recall the discussion of this structure in Sect. 2), which means that they need to learn that the leftmost digit indicates a value ten times that of the digit that’s to the right of it (if there is one). Or, put more sparsely, they need to learn that you increase the leftmost digit by one only after ten increases in the digit to its right (if there is one). As a result of this knowledge, which is necessary for the most elementary grasp of the numeral system, children can realise that the leftmost digit is the most important when it comes to the designated value. It is the one that carries the most weight when comparing two numbers, etc. When the syntactic structure is linked to an interpretation of numerals as designating cardinal values, children need to learn that the leftmost digit therefore designates a higher value (tens, hundreds, etc.) than digits to its right. Here a syntactic feature of the numeral system is linked to the semantic interpretation. Because of the place-value system the leftmost digit always indicates the highest value. Knowing how the place-value system works therefore enables children to know that the leftmost digit always indicates the highest value of all the digits that are present.
Once children know enough about the structure of the numeral system they can realise that the above method is guaranteed to provide a larger number. They already know that the leftmost digit always indicates the highest value. Consequently they can know that increasing that value will produce a larger number. And increasing a digit is quite simple as they mainly need to know that \(2 > 1\), \(3 > 2\), up to 9. Adding a digit to the left can be seen to guarantee a larger number on the same principle: the leftmost digit always indicates the highest value, so placing a 1 to the left will yield a higher number. The reasoning can therefore happen in relation to something that is already general: the structure of the numeral system. There is no need to imagine specific numerals, because we can start from a more general principle. Therefore there is also no need, as in Jeshion’s first thought experiment, to imagine a numeral without representing its internal structure.
One last thing to discuss before moving to the question whether concepts consistent with \(\forall x \mathbb {N}x \rightarrow \exists y(\mathbb {N}y \wedge y > x)\) are also consistent with the successor axiom is whether the current hypothesis also fits with the moment in time when children seem to realise that the numbers go on forever. For the hypothesis to be viable it shouldn’t be the case, for example, that children seem to have number concepts consistent with the successor axiom years before they are aware of the structure of the numeral system. In fact, were children to learn that we can always form a larger number on the basis of their knowledge of the structure of the numeral system, then the moment when they realise that you can keep on forming larger numbers should be correlated with their knowledge of the structure of the numeral system. The work of Cheung et al. (2017) found that these two are indeed correlated. They looked at the relation between children’s ability to count up to 100, their ability to name the successor (in terms of adding one) of a number and whether or not they realise that we can always form a larger number. They found that most children only start to answer that you can always find a larger number and that there is no largest number when they can count at least to 100 and when they perform near-perfect on the task of naming the successor of a given number. In other words, there is a strong correlation between knowing that it is always possible to form a larger number and counting ability. There is also a strong correlation between this knowledge and being able to name the successor of a given number, which I interpreted above as being able to interpret the numerals as specific cardinal values. Cheung et al. (2017) only report that these correlations hold with the combination: knowing that you can keep adding one (which seems to have been interpreted by some as asking if you can keep counting) and knowing that there is no largest number.
Further research will have to show what the exact correlations are between counting ability and knowledge that you can always keep counting. For my current purposes the study by Cheung et al. (2017) shows that there is no mismatch between the acquisition of concepts consistent with the successor axiom and knowledge of the structure of the numeral system. More practice with counting, in particular with not making mistakes with the peculiarities of the place-value system, indicate a better grasp of the structure of the numeral system. Learning this structure of the numeral system, i.e. the place-value system, is moreover quite difficult and children only succeed at doing so relatively late (Fuson 1990; Fuson and Briars 1990) For the hypothesis that children learn that you can always form a larger number on the basis of the structure of the numeral system to be viable there has to be evidence of such a correlation. The fact that this correlation was significant, but that there was no significant correlation with age supports my argument that the hypothesis is a viable alternative. Furthermore, there has been some research into how well children can separate out the different digits. As it turns out, they only become good at doing so when they are able to count to roughly 100 (Fuson and Hall 1983; Siegler and Robinson 1982; Rule et al. 2015)—exactly the point where Cheung et al. (2017) noticed that children start to realise that there is always a larger number. Knowledge that you can always form larger numbers correlates with knowledge of the structure of the numeral system. The strategy outlined above, or something similar dependent on place-values, is thus a viable alternative hypothesis for how children learn that the natural numbers go on forever. The argument for this claim will be extended in the next subsection, by showing that the hypothesis can also account for the developmental stages that have been observed. There is just one technical detail to establish first, namely that the strategy really gets us to the successor axiom.
I have been describing a strategy for acquiring concepts consistent with \(\forall x \mathbb {N}x \rightarrow \exists y(\mathbb {N}y \wedge y > x)\). Naturally, it is required that this is also formally sufficient for consistency with \(\forall x (\mathbb {N}x \rightarrow \exists y\, xPy)\). Fortunately, \(\forall x \mathbb {N}x \rightarrow \exists y(\mathbb {N}y \wedge y > x)\) implies the standard formulation of the successor axiom under the standard definition of \(y > x\). This is usually defined as \(\exists z (x + z = y)\). Addition, in turn, is defined in terms of the successor (or predecessor) relation.Footnote 3 So, if there is a natural number larger than x then this means that for some z there are z numbers between x and that larger number. Therefore, there has to be a y such that xPy (that y is the successor of x). In the other direction \(\forall x (\mathbb {N}x \rightarrow \exists y\, xPy)\) also implies that \(\forall x \mathbb {N}x \rightarrow \exists y(\mathbb {N}y \wedge y > x)\), because the y that is supposed to be larger than x can simply be chosen to be the successor of x that is guaranteed to exist by the successor axiom. Therefore, the two are logically equivalent and in terms of the structure of one’s number concepts it doesn’t matter if they are consistent with \(\forall x \mathbb {N}x \rightarrow \exists y(\mathbb {N}y \wedge y > x)\) or with \(\forall x (\mathbb {N}x \rightarrow \exists y\, xPy)\). Consistency with either one of these has the same consequences for what our natural number concepts have to be like.
The different developmental stages
Another finding that Cheung et al. (2017) report is that they have found four different stages of knowledge that children can be in. This corroborates earlier findings regarding stages of knowledge by Evans (1983), Gelman (1980), Hartnett (1991) and Hartnett and Gelman (1998). First, they may not realise that there is no largest number, nor that it is possible to always add 1 (mean age 5.2 years). Second, they may know that there is no largest number but not realise that this implies that you can always add 1 to a number (mean age 5.5 years). Third, children may not know that there is no largest number, even though they think that you can always add 1 (mean age 5.3 years). Fourth, they may know both that there is no largest number and that you can always add 1 to a number (mean age 6.2 years). When, and in what order, children go through these stages is mostly unclear, since there was a range for all of these categories from about 4 to 7 years. This seems to fit with Falk (2010), who found that at 6–7 about 50% manage to explain why going second in their game gives a winning strategy, which increases to 80% at 10–11. This supports the relevance of the data from Falk (2010) for showing that children are in a position to follow my alternative strategy, since the younger children who were interviewed were thus still in the process of learning about the infinity of the natural numbers. However, since we see that there are these stages, a hypothesis about how children acquire number concepts that are consistent with the successor axiom should be able to account for the existence of the different stages. The last part of my argument that this hypothesis is a viable alternative is therefore to show that these stages can be interpreted in terms of aspects of the structure of the numeral system, as those were highlighted in Sect. 2.
Particularly relevant is to see how it is that children may end up in the intermediate stages (two and three), as these help to indicate distinctions we should make when thinking about children’s mathematical abilities (and should thus be reflected by an account of the development of those abilities). The second stage was the least common with only 6 children out of 100 (and wasn’t found at all in earlier studies), but is also the more puzzling of the two. If children know that there is no largest number, then how can they deny that you can always add one? I can see at least two possible interpretations. One is that the children in question interpreted the question if you can keep adding one as a question whether they could personally do this. In that case, the answer may well be no, even though they realise that there is no largest number. Perhaps they don’t feel comfortable enough with large numbers (since they’re explicitly asked to name the highest number they know) to say that they can keep on adding one. Yet this still sits uneasily (but no more than that—it may just be that the later answer indicates general confusion) with the claim that the number they name is not the biggest that could ever be:
E: Can you think of a bigger number?
C: A million.
E: Is that the biggest number there could ever be?
C: No.
E: Can you think of a bigger number?
C: I don’t know. (Cheung et al. 2017, p. 33)
The other interpretation that I want to put forward is based instead on the distinction I made earlier between grasping the syntactic structure of the numeral system and interpreting the numerals as designating cardinal values. If the child (the one in question was 5 years, 3 months) hasn’t made the connection between these two, then we may explain the above behaviour. A claim about there not being a largest number may be related to cardinal values, while the question about counting relates to the syntactic structure of the numeral system. When that syntactic structure is grasped it is easy for children to form larger numbers, as the earlier interviews should show. This child hasn’t grasped the syntactic structure of the numeral system and therefore doesn’t know how to keep on counting, even though the child does know (e.g. on the basis of explicit instruction from his or her parents) that there are ever larger cardinal values. One indication for that latter claim is that the response to ‘why do they go on forever’? was “Because God made them”. (Cheung et al. 2017, p. 33) This doesn’t clash with my account that children learn about the infinity of the natural numbers via the syntactic structure of the numeral system, since on this explanation their answer that there is no largest number is a rehearsal of what the parents told the child. Proponents of the plus-one strategy will have to say something similar, since children deny that you can keep adding one—and so they presumably haven’t learned about the infinity of the natural numbers along the lines of the plus-one strategy either. So, on either interpretation of the data this stage can be accounted for by my alternative account.
The third stage, where children claim that the numbers don’t go on forever but that you can keep counting, can be analysed in the same way. The one interview that Cheung et al. (2017) report is from a child who says that the largest number is 2083 and that while you can keep counting, “C: Numbers do not go on forever because if you keep on counting, it takes you back to 0”. (Cheung et al. 2017, p. 34) In this case the child has simply misunderstood the syntactic structure of the numeral system. Yet it also means that there is something missing in the interpretation of numerals as designating cardinal values. Since the child is happy to affirm that you can keep counting, i.e. that you can keep adding one, it can’t be that he or she fully realises that this increases the cardinal value from 2083 to something higher. Here an abnormal count sequence is maintained, but that can only be possible (as a consistent practice) if the count sequence and the procedure of adding one isn’t also viewed as changing the designated cardinal value.
The data we currently have can be interpreted as support for the hypothesis that a child has correctly grasped the syntactic structure of the numeral system without interpreting numerals as designating specific cardinal values, especially since there is further data in support of the claim that (syntactic) knowledge of the numeral list precedes knowledge of the progression of cardinal values (Fuson 1988). On this interpretation children maintain that you can keep counting forever, because syntactically that is possible. However, they also maintain that there is a largest number, because number is viewed as cardinal value (not to claim that this is something a child would say, but for example: the number of atoms in the universe is the largest number). As long as these two elements are not combined, children end up with at most partial knowledge regarding the successor axiom. This means that the current hypothesis can account for all the developmental stages that were identified by Cheung et al. (2017), Evans (1983), Gelman (1980), Hartnett (1991) and Hartnett and Gelman (1998) in terms of aspects of the structure of the numeral system. In fact, Cheung et al. (2017, p. 32) also briefly suggest that a viable interpretation of the data is that the structure of the numeral system is instrumental in learning that there are infinitely many natural numbers (though via the plus-one strategy, so without my second claim).
Even so, there is one last argument that needs to be discussed. The fact that stage 2 is very uncommon and stage 3 common can be seen as an argument in favour of the plus-one strategy. The argument would be that my alternative account cannot explain why it is strange for children not to realize that you can keep adding one, even though they know that there is no largest number. After all, I do not claim that they learn this by reflecting on the procedure of adding one and so they could just ignore this procedure. My account would have a harder time explaining why stage 2 is uncommon, and so the plus-one strategy better fits the data. My interpretation of the data offers an answer to this argument. I suggest that children in this stage generally don’t grasp the syntactic structure of the numeral system. This means that they also cannot arrive at the conclusion that there is no largest number via my alternative account. The explanations for how we still get this data, i.e. the two interpretations I gave above, will be basically the same for my account and for the plus-one strategy. So, on either account stage 2 is expected to be uncommon, and on either it presents some difficulties to explain how it’s possible that children give these answers. In short, this fact doesn’t decide between the two accounts and my alternative account is empirically viable.