Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford: Oxford University Press.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.
Article
Google Scholar
Ash, T. (1989). Dynamic node creation in backpropagation networks. Connection Science, 1(4), 365–375.
Article
Google Scholar
Bacon, F. (2000). The new organon. Cambridge: Cambridge University Press.
Book
Google Scholar
Baehr, J. (2006). Character, reliability and virtue epistemology. The Philosophical Quarterly, 56(223), 193–212.
Article
Google Scholar
Baehr, J. (2008). Four varieties of character-based virtue epistemology. The Southern Journal of Philosophy, 46(4), 469–502.
Article
Google Scholar
Baehr, J. (2012). The inquiring mind: On intellectual virtues and virtue epistemology. Oxford: Oxford University Press.
Google Scholar
Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17(7), 348–360.
Article
Google Scholar
Battaly, H. (2008). Virtue epistemology. Philosophy Compass, 3(4), 639–663.
Article
Google Scholar
Bhattacharyya, S., & Ohlsson, S. (2010). Social creativity as a function of agent cognition and network properties: A computer model. Social Networks, 32(4), 263–278.
Article
Google Scholar
Bigham, J. P., Bernstein, M. S., & Adar, E. (2015). Human-computer interaction and collective intelligence. In T. W. Malone & M. S. Bernstein (Eds.), Handbook of collective intelligence. Cambridge, MA: MIT Press.
Google Scholar
Bjorklund, D. F. (1997). The role of immaturity in human development. Psychological Bulletin, 122(2), 153–169.
Article
Google Scholar
Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15(3), 311–341.
Article
Google Scholar
Brady, M. S., & Fricker, M. (Eds.). (2016). The epistemic life of groups: Essays in the epistemology of collectives. Oxford: Oxford University Press.
Google Scholar
Brown, A. D., Kouri, N., & Hirst, W. (2012). Memory’s malleability: Its role in shaping collective memory and social identity. Frontiers in Psychology, 3(257), 1–3.
Google Scholar
Burke, E. K., & Kendall, G. (Eds.). (2010). Search methodologies: Introductory tutorials in optimization and decision support techniques. New York, NY: Springer.
Google Scholar
Chi, E. H., Pirolli, P., Suh, B., Kittur, A., Pendleton, B., & Mytkowicz, T. (2008). Augmented social cognition. In AAAI Spring symposium on social information processing, Stanford, California, USA.
Convertino, G., Billman, D., Pirolli, P., Massar, J., & Shrager, J. (2008). The CACHE study: Group effects in computer-supported collaborative analysis. Computer Supported Cooperative Work, 17(4), 353–393.
Article
Google Scholar
Cooke, N. J., Gorman, J. C., & Winner, J. L. (2007). Team cognition. In F. T. Durso, R. S. Nickerson, S. T. Dumais, S. Lewandowsky, & T. J. Perfect (Eds.), Handbook of applied cognition (2nd ed.). Chichester: Wiley.
Google Scholar
Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.
Article
Google Scholar
Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society of London B: Biological Sciences, 276(1677), 4353–4361.
Article
Google Scholar
Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York, NY: Basic Books.
Google Scholar
Fagin, M. M., Yamashiro, J. K., & Hirst, W. C. (2013). The adaptive function of distributed remembering: Contributions to the formation of collective memory. Review of Philosophy and Psychology, 4(1), 91–106.
Article
Google Scholar
Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13–36.
Article
Google Scholar
Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm intelligence. Swarm Intelligence, 1(1), 3–31.
Article
Google Scholar
Gigone, D., & Hastie, R. (1993). The common knowledge effect: Information sharing and group judgment. Journal of Personality and Social Psychology, 65(5), 959–974.
Article
Google Scholar
Goldman, A. I., & Whitcomb, D. (Eds.). (2011). Social epistemology: Essential readings. New York, NY: Oxford University Press.
Google Scholar
Greco, J., & Turri, J. (Eds.). (2012). Virtue epistemology: Contemporary readings. Cambridge, MA: MIT Press.
Google Scholar
Hendler, J., & Berners-Lee, T. (2010). From the Semantic Web to social machines: A research challenge for AI on the World Wide Web. Artificial Intelligence, 174, 156–161.
Article
Google Scholar
Hertwig, R., & Todd, P. M. (2003). More is not always better: The benefits of cognitive limits. In D. Hardman & L. Macchi (Eds.), Thinking: Psychological perspectives on reasoning, judgment and decision making. Chichester: Wiley.
Google Scholar
Heylighen, F. (2013). From human computation to the global brain: The self-organization of distributed intelligence. In P. Michelucci (Ed.), Handbook of human computation. New York, New York, USA: Springer.
Google Scholar
Hinsz, V., Tindale, R., & Vollrath, D. (1997). The emerging conceptualization of groups as information processors. Psychological Bulletin, 121(1), 43–64.
Article
Google Scholar
Hinsz, V. B., Tindale, R. S., & Nagao, D. H. (2008). Accentuation of information processes and biases in group judgments integrating base-rate and case-specific information. Journal of Experimental Social Psychology, 44(1), 116–126.
Article
Google Scholar
Hong, L., & Page, S.E. (2004). Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proceedings of the National Academy of Sciences,
101(46):16, 385–16, 389.
Horváth, G., Kovářík, J., & Mengel, F. (2012). Limited memory can be beneficial for the evolution of cooperation. Journal of Theoretical Biology, 300, 193–205.
Article
Google Scholar
Hourihan, K. L., & Benjamin, A. S. (2010). Smaller is better (when sampling from the crowd within): Low memory-span individuals benefit more from multiple opportunities for estimation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(4), 1068–1074.
Google Scholar
Hutchins, E. (1991). The social organization of distributed cognition. In L. Resnick, J. Levine, & S. Teasley (Eds.), Perspectives on socially shared cognition. Washington DC: The American Psychological Association.
Google Scholar
Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.
Google Scholar
Janis, I. L. (1982). Victims of groupthink (2nd ed.). Boston, MA: Houghton Mifflin.
Google Scholar
Judd, S., Kearns, M., & Vorobeychik, Y. (2010). Behavioral dynamics and influence in networked coloring and consensus. Proceedings of the National Academy of Sciences, 107(34), 14,978–14,982.
Article
Google Scholar
Kareev, Y. (2012). Advantages of cognitive limitations. In P. Hammerstein & J. R. Stevens (Eds.), Evolution and the mechanisms of decision making. Cambridge, MA: MIT Press.
Google Scholar
Kearns, M. (2012). Experiments in social computation. Communications of the ACM, 55(10), 56–67.
Article
Google Scholar
Kearns, M., Suri, S., & Montfort, N. (2006). An experimental study of the coloring problem on human subject networks. Science, 313(5788), 824–827.
Article
Google Scholar
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE international conference on neural networks, Perth, Australia.
Kerr, N. L., & Tindale, R. S. (2004). Group performance and decision making. Annual Review of Psychology, 55, 623–655.
Article
Google Scholar
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.
Article
Google Scholar
Lackey, J. (Ed.). (2014). Essays in collective epistemology. Oxford: Oxford University Press.
Google Scholar
Lazer, D., & Friedman, A. (2007). The network structure of exploration and exploitation. Administrative Science Quarterly, 52(4), 667–694.
Article
Google Scholar
Lungarella, M., & Berthouze, L. (2002). Adaptivity through physical immaturity. In 2nd International workshop on epigenetic robotics: Modeling cognitive development in robotic systems, Edinburgh, Scotland.
Malone, T. W., & Bernstein, M. S. (Eds.). (2015). Handbook of collective intelligence. Cambridge, MA: MIT Press.
Google Scholar
March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2(1), 71–87.
Article
Google Scholar
March, J. G. (2006). Rationality, foolishness, and adaptive intelligence. Strategic Management Journal, 27(3), 201–214.
Article
Google Scholar
Marder, E., & Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology, 69, 291–316.
Article
Google Scholar
Mason, W. (2013). Collective search as human computation. In P. Michelucci (Ed.), Handbook of human computation. New York, NY: Springer.
Google Scholar
Mason, W., & Watts, D. J. (2012). Collaborative learning in networks. Proceedings of the National Academy of Sciences, 109(3), 764–769.
Article
Google Scholar
Mason, W., Conrey, F., & Smith, E. (2007). Situating social influence processes: Dynamic, multidirectional flows of influence within social networks. Personality and Social Psychology Review, 11(3), 279–300.
Article
Google Scholar
Mason, W. A., Jones, A., & Goldstone, R. L. (2008). Propagation of innovations in networked groups. Journal of Experimental Psychology: General, 137(3), 422–433.
Article
Google Scholar
Mercier, H., & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34(2), 57–111.
Article
Google Scholar
Meyrand, P., Simmers, J., & Moulins, M. (1994). Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system. The Journal of Neuroscience, 14(2), 630–644.
Article
Google Scholar
Michelucci, P. (Ed.). (2013). Handbook of human computation. New York, NY: Springer.
Google Scholar
Michelucci, P., & Dickinson, J. L. (2016). The power of crowds. Science, 351(6268), 32–33.
Article
Google Scholar
Miller, B., & Record, I. (2013). Justified belief in a digital age: On the epistemic implications of secret Internet technologies. Episteme, 10(02), 117–134.
Article
Google Scholar
Mozer, M., & Smolensky, P. (1989a). Skeletonization: A technique for trimming the fat from a network via relevance assessment. In D. Touretzky (Ed.), Advances in neural information processing systems I. San Mateo, CA: Morgan Kaufmann.
Google Scholar
Mozer, M. C., & Smolensky, P. (1989b). Using relevance to reduce network size automatically. Connection Science, 1(2), 3–16.
Article
Google Scholar
Myers, D. G., & Lamm, H. (1976). The group polarization phenomenon. Psychological Bulletin, 83(4), 602–627.
Article
Google Scholar
Nhan, J., Huey, L., & Broll, R. (2017). Digilantism: An analysis of crowdsourcing and the Boston marathon bombings. British Journal of Criminology, 57(2), 341–361.
Google Scholar
Nickerson, R. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175–220.
Article
Google Scholar
Olive, T. (2004). Working memory in writing: Empirical evidence from the dual-task technique. European Psychologist, 9, 32–42.
Article
Google Scholar
Pariser, E. (2011). The filter bubble: What the internet is hiding from you. London: Penguin.
Google Scholar
Pentland, A. (2013). The data-driven society. Scientific American, 309(4), 78–83.
Article
Google Scholar
Pentland, A. (2014). Social physics: How good ideas spread—the lessons from a new science. New York, NY: Penguin Press.
Google Scholar
Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.
Article
Google Scholar
Rauhut, H., & Lorenz, J. (2011). The wisdom of crowds in one mind: How individuals can simulate the knowledge of diverse societies to reach better decisions. Journal of Mathematical Psychology, 55(2), 191–197.
Article
Google Scholar
Reitter, D., & Lebiere, C. (2012). Social cognition: Memory decay and adaptive information filtering for robust information maintenance. In 26th AAAI conference on artificial intelligence, Toronto, Canada.
Schulz-Hardt, S., Frey, D., Lüthgens, C., & Moscovici, S. (2000). Biased information search in group decision making. Journal of Personality and Social Psychology, 78(4), 655–669.
Article
Google Scholar
Selverston, A. (1995). Modulation of circuits underlying rhythmic behaviors. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 176(2), 139–147.
Article
Google Scholar
Simpson, T. W. (2012). Evaluating Google as an epistemic tool. Metaphilosophy, 43(4), 426–445.
Article
Google Scholar
Smart, P. R., & Shadbolt, N. R. (2014). Social machines. In M. Khosrow-Pour (Ed.), Encyclopedia of information science and technology. Hershey, PA: IGI Global.
Google Scholar
Smart, P. R., Huynh, T. D., Braines, D., & Shadbolt, N. R. (2010). Dynamic networks and distributed problem-solving. In Knowledge systems for coalition operations, Vancouver, British Columbia, Canada.
Solomon, M. (1992). Scientific rationality and human reasoning. Philosophy of Science, 59(3), 439–455.
Article
Google Scholar
Stasser, G., & Titus, W. (2003). Hidden profiles: A brief history. Psychological Inquiry, 14(3–4), 304–313.
Article
Google Scholar
Sunstein, C. R. (2011). Deliberating groups versus prediction markets (or Hayek’s challenge to Habermas). In A. I. Goldman & D. Whitcomb (Eds.), Social epistemology: Essential readings. New York, New York, USA: Oxford University Press.
Google Scholar
Surowiecki, J. (2005). The wisdom of crowds: Why the many are smarter than the few. New York, NY: Random House.
Google Scholar
Theiner, G. (2014). Varieties of group cognition. In L. A. Shapiro (Ed.), The Routledge handbook of embodied cognition. New York, NY: Routledge.
Google Scholar
Theiner, G., Allen, C., & Goldstone, R. L. (2010). Recognizing group cognition. Cognitive Systems Research, 11, 378–395.
Article
Google Scholar
Trianni, V., Tuci, E., Passino, K. M., & Marshall, J. A. (2011). Swarm cognition: An interdisciplinary approach to the study of self-organising biological collectives. Swarm Intelligence, 5(1), 3–18.
Article
Google Scholar
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.
Article
Google Scholar
Weidenmüller, A., & Seeley, T. D. (1999). Imprecision in waggle dances of the honeybee (Apis mellifera) for nearby food sources: Error or adaptation? Behavioral Ecology and Sociobiology, 46(3), 190–199.
Article
Google Scholar
Xu, B., Liu, R., & He, Z. (2016). Individual irrationality, network structure, and collective intelligence: An agent-based simulation approach. Complexity, 21(S1), 44–54.
Article
Google Scholar
Zagzebski, L. T. (1996). Virtues of the mind: An inquiry into the nature of virtue and the ethical foundations of knowledge. Cambridge: Cambridge University Press.
Book
Google Scholar
Zollman, K. J. (2010). The epistemic benefit of transient diversity. Erkenntnis, 72(1), 17–35.
Article
Google Scholar
Zonneveld, L., Dijstelbloem, H., & Ringoir, D. (Eds.). (2008). Reshaping the human condition: Exploring human enhancement. The Hague: Rathenau Institute.
Google Scholar