Advertisement

Synthese

, Volume 190, Supplement 1, pp 5–29 | Cite as

Abstract argument games via modal logic

  • Davide Grossi
Article

Abstract

Inspired by some logical considerations, the paper proposes a novel perspective on the use of two-players zero-sum games in abstract argumentation. The paper first introduces a second-order modal logic, within which all main Dung-style semantics are shown to be formalizable, and then studies the model checking game of this logic. The model checking game is then used to provide a systematic game theoretic proof procedure to test membership with respect to all those semantics formalizable in the logic. The paper discusses this idea in detail and illustrates it by providing a game for the so-called skeptical preferred and skeptical semi-stable semantics.

Keywords

Modal logic Abstract argumentation Logic games  Argument games 

Notes

Acknowledgments

This work was partly supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek under the NWO VENI grant 639.021.816.

References

  1. Baroni, P., & Giacomin, M. (2009) Semantics of abstract argument systems. In I. Rahwan & G. R. Simari (Eds.), Argumentation in artifical Intelligence. Springer.Google Scholar
  2. Bench-Capon, T., & Dunne, P. E. (2007). Artificial intelligence. Argumentation in Artificial Intelligence, 171(10), 619–641.CrossRefGoogle Scholar
  3. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge: Cambridge University Press.Google Scholar
  4. Caminada, M., Carnielli, W., & Dunne, P. (2011). Semi-stable semantics. Journal of Logic and Computation, 22(5), 1207–1254.Google Scholar
  5. Caminada, M., & Wu, Y. (2009). An argument game for stable semantics. Journal of the IGPL, 17(1). 77–90.Google Scholar
  6. Cayrol, C., Doutre, S., & Mengin, J. (2001). Dialectical proof theories for the credulous preferred semantics of argumentation frameworks. In S. Benferhat & P. Besnard (Eds.), Proceedings of ECSQARU 2001 (pp. 668–679). Springer.Google Scholar
  7. Cayrol, C., Doutre, S., & Mengin, J. (2003). On decision problems related to the preferred semantics for argumentation frameworks. Journal of Logic and Computation, 13(3), 377–403.CrossRefGoogle Scholar
  8. Dung, P. M. (1994). Logic programming as dialogue games. Technical report, Division of Computer Science, Asian Institute of Technology.Google Scholar
  9. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–358.CrossRefGoogle Scholar
  10. Dung, P. M., Mancarella, P., & Toni, F. (2006). A dialectic procedure for sceptical assumption-based argumentation. In Proceedings of the 1st international conference on computational models of argument (COMMA 2006) (pp. 145–156). IOS Press.Google Scholar
  11. Dung, P. M., & Thang, P. M. (2007). A sound and complete dialectical proof procedure for sceptical preferred argumentation. In Proceedings of LPNMR workshop on argumentation and non-monotonic reasoning (ArgNMR07).Google Scholar
  12. Dung, P. M., & Thang, P. M. (2009). A unified framework for representation and development of dialectical proof procedures in argumentation. In Proceedings of the twenty-first international joint conference on artificial intelligence (IJCAI-09) (pp. 746–751).Google Scholar
  13. Fine, K. (1970). Propositional quantifiers in modal logic. Theoria, 36, 336–346.CrossRefGoogle Scholar
  14. Grädel, E. (2002). Model checking games. In R. de Queiroz, L. C. Pereira, & E. H. Haeusler (Eds.), Proceedings of WOLLIC’02, Vol. 67 of electronic notes in theoretical computer science (pp. 15–34). Elsevier.Google Scholar
  15. Grossi, D. (2010). On the logic of argumentation theory. In W. van der Hoek, G. Kaminka, Y. Lespérance, & S. Sen (Eds.), Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS 2010) (pp. 409–416). IFAAMAS.Google Scholar
  16. Grossi, D. (2011a). An application of model checking games to abstract argumentation. In H. van Ditmarsch, J. Lang, & S. Ju (Eds.), Logic, rationality and interaction: third internalional workshop (LORI 2011), Vol. 6953 of LNAI (pp. 74–86).Google Scholar
  17. Grossi, D. (2011b). Argumentation theory in the view of modal logic. In P. McBurney & I. Rahwan (Eds.), Post-proceedings of the 7th international workshop on argumentation in multi-agent systems (pp. 190–208).Google Scholar
  18. Grossi, D. (2012). Fixpoints and iterated updates in abstract argumentation. In Proceedings of the 13th international conference on principles of knowledge representation and reasoning (KR 2012).Google Scholar
  19. Jacobovits, H., & Vermeir, D. (1999). Dialectic semantics for argumentation frameworks. In Proceedings of the 7th international conference on artificial intelligence and law (ICAIL’99) (pp. 53–62).Google Scholar
  20. Modgil, S. & Caminada, M. (2009). Proof theories and algorithms for abstract argumentation frameworks. In I. Rahwan & G. Simari (Eds.), Argumentation in AI (pp. 105–132). Springer.Google Scholar
  21. Pollock, J. L. (1987). Defeasible reasoning. Cognitive Science, 11, 481–518.CrossRefGoogle Scholar
  22. Pollock, J. L. (1991). A theory of defeasible reasoning. International Journal of Intelligent Systems, 6(1), 33–54.CrossRefGoogle Scholar
  23. Prakken, H., & Vreeswijk, G. (2002). Logics for defeasible argumentation. In Handbook of philosophical logic IV (pp. 218–319, 2nd ed.).Google Scholar
  24. van Benthem, J. (2005). Logic in Games. Lecture notes of the ILLC graduate course on logic: language and information, Universiteit van Amsterdam, Amsterdam, The Netherlands.Google Scholar
  25. van Benthem, J. (2011). Logical dynamics of information and interaction. Cambridge: Cambridge University Press.Google Scholar
  26. Venema, Y. (2008). Lectures on the modal \(\mu \)-calculus. Renmin University in Beijing (China).Google Scholar
  27. Vreeswijk, G. & Prakken, H. (2000). Credulous and sceptical argument games for preferred semantics. In Proceedings of the 7th European workshop on logic for artificial intelligence (JELIA’00) (pp. 239–253). Springer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations