Skip to main content
Log in

One-sided Perron Differential Inclusions

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

The main qualitative properties of the solution set of almost lower (upper) semicontinuous one-sided Perron differential inclusion with state constraints in finite dimensional spaces are studied. Using the technique introduced by Veliov (Nonlinear Anal 23:1027–1038, 1994) we give sufficient conditions for the solution map of the above state constrained differential inclusion to be continuous in the sense of Hausdorff metric. An application on the propagation of the continuity of the state constrained minimum time function associated with the nonautonomous differential inclusion and the target zero is given. Some relaxation theorems are proved, which are used afterward to derive necessary and sufficient conditions for invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cannarsa, P., Castelpietra, M.: Lipschitz continuity and local semiconcavity for exit time problems with state constraints. J. Differ. Equ. 245(3), 616–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cârjă, O., Lazu, A.: Lower semi-continuity of the solution set for semilinear differential inclusions. J. Math. Anal. Appl. 385, 865–873 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cârjă, O., Lazu, A.: On the regularity of the solution map for differential inclusions. Dyn. Syst. Appl. 21, 457–466 (2012)

    MATH  Google Scholar 

  4. Cârjă, O., Necula, M., Vrabie, I.: Viability, Invariance and Applications. Elsevier Science B.V., Amsterdam (2007)

    MATH  Google Scholar 

  5. Cârjă, O., Necula, M., Vrabie, I.: Necessary and sufficient conditions for viability for semilinear differential inclusions. Trans. Am. Math. Soc. 361, 343–390 (2009)

    Article  MATH  Google Scholar 

  6. Cârjă, O., Ursescu, C.: The characteristics method for a first order partial differential equation. An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 39, 367–396 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Clarke, F., Ledyaev, Yu., Stern, R., Wolenski, P.: Qualitative properties of trajectories of control systems: a survey. J. Dyn. Control Syst. 1, 1–48 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarke, F., Ledyaev, Yu., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  9. De Blasi, F., Pianigiani, G., Baire’s category and relaxation problems for locally lipschitzean differential inclusions in finite and infinite time intervals. Nonlinear Anal. TMA, 72, 288–301 (2009)

    Article  Google Scholar 

  10. Deimling, K.: Multivalued Differential Equations. De Grujter, Berlin (1992)

    Book  MATH  Google Scholar 

  11. Donchev, T.: Properties of the reachable set of control systems. Syst. Control Lett. 46, 379–386 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donchev, T.: Generic properties of multifunctions: applications to differential inclusions. Nonlinear Anal. 74, 2585–2590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donchev, T., Farkhi, E.: On the theorem of Filippov-Plis and some applications. Control Cybern. 38, 1–21 (2009)

    MathSciNet  Google Scholar 

  14. Donchev, T., Rios, V., Wolenski, P.: Strong invariance and one-sided Lipschitz multifunctions. Nonlinear Anal. 60(5), 849–862 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donchev, T., Rios, V., Wolenski, P.: Strong invariance for discontinuous Hilbert space differential inclusions. An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Noua, Mat. 51(2), 265–279 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Filippov, A.: Differential equations with discontinuous right-hand side. Mat. Sb. (N.S.) 51(93), 99–128 (1960) (in Russian); English translation: Amer. Math. Soc. Translat. Ser. II 42, 199–231 (1964)

    Google Scholar 

  17. Filippov, A.: Classical solutions of differential equations with multi-valued right-hand side. SIAM J. Control 5, 609–621 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frankowska, H.: A priori estimates for operational differential inclusions. J. Differ. Equ. 84(1), 100–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frankowska, H., Rampazzo, F.: Filippov’s and Filippov-Wazewski’s theorems on closed domains. J. Differ. Equ. 161, 449–478 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krastanov, M.: Forward invariant sets, homogeneity and small-time local controllability. In: Jakubczyk, B., et al. (eds.) Geometry in Nonlinear Control and Differential Inclusions, vol. 32, pp. 287–300. Banach Center Publ., Polish Acad. Sci., Warsaw (1995)

  21. Nour, C., Stern, R.: Regularity of the state constrained minimal time function. Nonlinear Anal. 66, 62–72 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nour, C., Stern, R.: The state constrained bilateral minimal time function. Nonlinear Anal. 69, 3549–3558 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Plis, A.: On trajectories of orientor fields. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 13, 571–573 (1965)

    MathSciNet  MATH  Google Scholar 

  24. Soner, H.: Optimal control problems with state-space constraints I. SIAM J. Control Optim. 24, 551–561 (1986)

    Google Scholar 

  25. Tolstonogov, A.: Differential Inclusions in a Banach Space. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  26. Veliov, V.: Differential inclusions with stable subinclusions. Nonlinear Anal. 23, 1027–1038 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, Q.: On the solution set of the differential inclusions in Banach spaces. J. Differ. Equ. 93, 213–237 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzanko Donchev.

Additional information

Research of first and 2nd authors is supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0154, while research of 3rd author is partially supported by Higher Education Commission, Pakistan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donchev, T., Lazu, A.I. & Nosheen, A. One-sided Perron Differential Inclusions. Set-Valued Var. Anal 21, 283–296 (2013). https://doi.org/10.1007/s11228-012-0227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-012-0227-y

Keywords

Mathematics Subject Classifications (2010)

Navigation