Set-Valued Analysis

, 16:861 | Cite as

Asymptotic Compactness and Attractors for Phase-Field Equations in ℝ3

Article

Abstract

In this paper we study the asymptotic behaviour of solutions of the phase-field system on an unbounded domain. We do not assume conditions on the non-linear term ensuring the uniqueness of the Cauchy problem, so that we have to work with multivalued semiflows rather than with semigroups of operators. In this way we prove the existence of a global attractor by considering the convergence in an appropriate weighted space. This result is also new for more restrictive conditions, which guarantee the uniqueness of solutions.

Keywords

Setvalued dynamical system Global attractor Phase-field equations Unbounded domain 

Mathematics Subject Classifications (2000)

35B40 35B41 35K55 35K57 37B25 58C06 

References

  1. 1.
    Arrieta, J.M., Cholewa, J., Dlotko, T., Rodriguez-Bernal, A.: Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains. Nonlinear Anal. 56, 515–554 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Babin, A.V., Vishik, M.I.: Attractors of partial differential evolution equations in an unbounded domain. Proc. Roy. Soc. Edinburgh 116A, 221–243 (1990)MathSciNetGoogle Scholar
  3. 3.
    Bates, P.W., Zheng, S.: Inertial manifolds and inertial sets for the phase-field equations. J. Dynam. Differential Equations 4, 375–398 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brezis, H.: Análisis Funcional. Alianza Editorial, Madrid (1984) (translated from Analyse Fonctionalle. Masson, Paris 1983)Google Scholar
  5. 5.
    Brochet, D., Hilhorst, D., Chen, X.: Finite dimensional exponential attractor for the phase field model. Appl. Anal. 49, 197–212 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brochet, D., Hilhorst, D., Novick-Cohen, A.: Maximal attractor and inertial sets for a conserved phase field model. Adv. Differential Equations 1, 547–578 (1996)MATHMathSciNetGoogle Scholar
  7. 7.
    Conti, M., Mola, G.: Attractors for a phase field model on ℝ3. Adv. Math. Sci. Appl. 15, 527–543 (2005)MATHMathSciNetGoogle Scholar
  8. 8.
    Dlotko, T.: Global attractor for the Cahn–Hilliard equation in H 2 and H 3. J. Differential Equations 113, 381–393 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Efendiev, M., Zelik, S.: The attractor for a nonlinear reaction–diffusion system in an unbounded domain. Comm. Pure Appl. Math. 54, 625–688 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fife, P.: Models for phase separation and their mathematics. Electron. J. Differential Equations 48, 1–26 (2000)MathSciNetGoogle Scholar
  11. 11.
    Gajewsky, H., Gröger, K., Zacharias, K.: Nichlineare operatorgleichungen und operatordifferentialgleichungen. Akademie-Verlag, Berlin (1974)Google Scholar
  12. 12.
    Jiménez-Casas, A., Rodríguez-Bernal, A.: Asymptotic behaviour for a phase-field model in higher order Sobolev spaces. Rev. Mat. Complut. 15, 213–248 (2002)MATHMathSciNetGoogle Scholar
  13. 13.
    Kalantarov, V.K.: On minimal global attractor of the system of phase-field equations. Zap. Nauchn. Sem. LOMI 188, 70–86 (1987)Google Scholar
  14. 14.
    Kalantarov, V.K.: On the global behaviour of the solutions of some nonlinear equations of fourth order. Zap. Nauchn. Sem. LOMI 163, 66–75 (1987)MATHGoogle Scholar
  15. 15.
    Kapustyan, A.V.: Attractor of semiflow, generated by phase-field equations system without uniqueness of solution. Ukraïn. Mat. Zh. 7, 1006–1009 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kapustyan, A.V., Melnik, V.S., Valero, J.: Attractors of multivalued dynamical processes generated by phase-field equations. Internat. J. Bifur. Chaos 13, 1969–1984 (2003)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kapustyan, A.V., Melnik, V.S., Valero, J., Yasinsky, V.V.: Global attractors of multi-valued evolution equations without uniqueness. Naukova Dumka, Kiev (2008)Google Scholar
  18. 18.
    Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéares. Dunod, Gauthier Villars (1969)Google Scholar
  19. 19.
    Lions, J.L., Magenes, E.: Problèmes aux limites non-homogènes et applications. Dunod, Paris (1968)MATHGoogle Scholar
  20. 20.
    Melnik, V.S., Valero, J.: On attractors of multi-valued semi-flows and differential inclusions. Set-Valued Anal. 6, 83–111 (1998)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Morillas, F.: Atractores de sistemas de reacción difusión y ecuaciones de campo de fase. Ph.D. Dissertation, Universidad de Valencia (2007)Google Scholar
  22. 22.
    Morillas, F., Valero, J.: Attractors for reaction–diffusion equations in ℝN with continuous nonlinearity. Asymptot. Anal. 44, 111–130 (2005)MATHMathSciNetGoogle Scholar
  23. 23.
    Robinson, J.C.: Infinite-dimensional dynamical systems. Cambridge University Press, Cambridge (2001)Google Scholar
  24. 24.
    Rocca, E., Schimperna, G.: Universal attractor for a Penrose–Fife sytem with special heat flux law. Mediterr. J. Math. 1, 109–121 (2004)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Shen, W., Zheng, S.: Maximal attractors for the phase-field equations of Penrose–Fife type. Appl. Math. Lett. 15, 1019–1023 (2002)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Taylor, M.E.: Partial differential equations III. In: Applied Mathematical Sciences, vol. 117. Springer, New York (1996)Google Scholar
  27. 27.
    Temam, R.: Navier-Stokes equations. North-Holland, Amsterdam (1979)MATHGoogle Scholar
  28. 28.
    Wang, B.: Attractors for reaction–diffusion equations in unbounded domains. Physica, D 128, 41–52 (1999)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Yosida, K.: Functional Analysis. Springer-Verlag, Berlin-Heidelberg (1965)MATHGoogle Scholar
  30. 30.
    Zelik, S.V.: The attractor for a nonlinear reaction–diffusion system in the unbounded domain and Kolmogorov’s e-entropy. Math. Nachr. 232, 129–179 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Dpto. de Ingeniería Hidráulica y Medio AmbienteUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Centro de Investigación OperativaUniversidad Miguel HernándezElche (Alicante)Spain

Personalised recommendations