Skip to main content
Log in

Unilateral protection scheme for N-qubit GHZ states against decoherence: a resource-efficient approach

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel protection scheme for N-qubit Greenberger–Horne–Zeilinger (GHZ) states against amplitude damping noise, using unilateral operations. The key innovation lies in the implementation of local operations on a single qubit, irrespective of the total number of qubits, thereby significantly reducing the operational complexity and resource requirements compared to existing methods. The scheme involves a unilateral rotation to transform the GHZ state into a less vulnerable configuration before exposing it to noise, followed by a weak measurement and another unilateral rotation to recover the initial state. We provide a comprehensive mathematical analysis of the proposed unilateral protection scheme, deriving expressions for both fidelity and success probability. The practical feasibility of our scheme is demonstrated through simulations using the Qiskit SDK, in which we provide the corresponding quantum circuit for performing the partial weak measurement used in our scheme. Comparative analysis with pioneer protection schemes reveals a substantial enhancement in success probability and fidelity for both GHZ and generalized GHZ states, emphasizing the superiority of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. MATLAB and Qiskit codes for regenerating the results of this article are available from https://github.com/Sjd-Hz/Unilateral-protection-scheme.

References

  1. Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett 86(22):5188

    Article  Google Scholar 

  2. Nezami S, Walter M (2020) Multipartite entanglement in stabilizer tensor networks. Phys Rev Lett 125(24):241602

    Article  MathSciNet  Google Scholar 

  3. Hu X-M, Zhang C, Liu B-H, Cai Y, Ye X-J, Guo Y, Xing W-B, Huang C-X, Huang Y-F, Li C-F et al (2020) Experimental high-dimensional quantum teleportation. Phys Rev Lett 125(23):230501

    Article  Google Scholar 

  4. Paulson K, Panigrahi PK (2019) Tripartite non-maximally-entangled mixed states as resource for optimally controlled quantum teleportation fidelity. Phys Rev A 100(5):052325

    Article  Google Scholar 

  5. Harraz S, Zhang J-Y, Cong S (2022) High-fidelity quantum teleportation with w states through noisy channels. arXiv preprint arXiv:2206.14463

  6. Song D, He C, Cao Z, Chai G (2018) Quantum teleportation of multiple qubits based on quantum Fourier transform. IEEE Commun Lett 22(12):2427–2430

    Article  Google Scholar 

  7. Bennett CH, Wiesner SJ (1992) Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys Rev Lett 69(20):2881

    Article  MathSciNet  Google Scholar 

  8. Guo Y, Liu B-H, Li C-F, Guo G-C (2019) Advances in quantum dense coding. Adv Quantum Technol 2(5–6):1900011

    Article  Google Scholar 

  9. Yeo Y, Chua WK (2006) Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett 96(6):060502

    Article  Google Scholar 

  10. Grasselli F, Kampermann H, Bruß D (2018) Finite-key effects in multipartite quantum key distribution protocols. New J Phys 20(11):113014

    Article  Google Scholar 

  11. Epping M, Kampermann H, Bruß D et al (2017) Multi-partite entanglement can speed up quantum key distribution in networks. New J Phys 19(9):093012

    Article  MathSciNet  Google Scholar 

  12. Pivoluska M, Huber M, Malik M (2018) Layered quantum key distribution. Phys Rev A 97(3):032312

    Article  Google Scholar 

  13. Han J, Liu Y, Sun X, Chen A (2020) A self-adjusting quantum key renewal management scheme in classical network symmetric cryptography. J Supercomput 76:4212–4230

    Article  Google Scholar 

  14. Haist T, Osten W (2012) White-light interferometric method for secure key distribution. J Supercomput 62:656–662

    Article  Google Scholar 

  15. Greenberger DM, Horne MA, Zeilinger A (1989) Going beyond bell’s theorem. In: Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Springer, Berlin, pp 69–72

  16. Tavakoli A, Herbauts I, Żukowski M, Bourennane M (2015) Secret sharing with single d-level quantum system. Phys Rev A 92(3):030302

    Article  Google Scholar 

  17. Liao C-H, Yang C-W, Hwang T (2014) Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf Process 13:1907–1916

    Article  Google Scholar 

  18. Wang X-J, An L-X, Yu X-T, Zhang Z-C (2017) Multilayer quantum secret sharing based on GHZ state and generalized bell basis measurement in multiparty agents. Phys Lett A 381(38):3282–3288

    Article  Google Scholar 

  19. Cherbal S, Zier A, Hebal S, Louail L, Annane B (2023) Security in internet of things: review on approaches based on blockchain, machine learning, cryptography, and quantum computing. J. Supercomput. 80:3738–3816

    Article  Google Scholar 

  20. Christandl M, Wehner S (2005) Quantum anonymous transmissions. In: International Conference on the Theory and Application of Cryptology and Information Security. Springer, Berlin, pp 217–235

  21. Komar P et al (2014) A quantum network of clocks. Nat Phys 10(8):582–587

    Article  Google Scholar 

  22. White AG, James DFV, Munro WJ, Kwiat PG (2001) Exploring Hilbert space: accurate characterization of quantum information. Phys Rev A 65(1):012301

    Article  MathSciNet  Google Scholar 

  23. Sharma KK, Gerdt VP (2020) Entanglement sudden death and birth effects in two qubits maximally entangled mixed states under quantum channels. Int J Theor Phys 59:403–414

    Article  MathSciNet  Google Scholar 

  24. Nielsen MA, Chuang IL (2001) Quantum computation and quantum information. Phys Today 54(2):60

    Google Scholar 

  25. Sharma KK, Ganguly S (2018) Positive impact of decoherence on spin squeezing in GHZ and W states. J Phys Commun 2(1):015012

    Article  Google Scholar 

  26. Zhang Y-J, Han W, Xia Y-J, Tian J-X, Fan H (2016) Speedup of quantum evolution of multiqubit entanglement states. Sci Rep 6(1):27349

    Article  Google Scholar 

  27. Zhang Y-J, Zou X-B, Xia Y-J, Guo G-C (2010) Different entanglement dynamical behaviors due to initial system-environment correlations. Phys Rev A 82(2):022108

    Article  Google Scholar 

  28. Bennett CH, DiVincenzo DP, Smolin JA, Wootters WK (1996) Mixed-state entanglement and quantum error correction. Phys Rev A 54(5):3824

    Article  MathSciNet  Google Scholar 

  29. Krastanov S, Albert VV, Jiang L (2019) Optimized entanglement purification. Quantum 3:123

    Article  Google Scholar 

  30. Fujii K, Yamamoto K (2009) Entanglement purification with double selection. Phys Rev A 80(4):042308

    Article  Google Scholar 

  31. Huang Y-S, Xing H-B, Yang M, Yang Q, Song W, Cao Z-L (2014) Distillation of multipartite entanglement by local filtering operations. Phys Rev A 89(6):062320

    Article  Google Scholar 

  32. Leditzky F, Datta N, Smith G (2017) Useful states and entanglement distillation. IEEE Trans Inf Theory 64(7):4689–4708

    Article  MathSciNet  Google Scholar 

  33. Seshadreesan KP, Takeoka M, Wilde MM (2016) Bounds on entanglement distillation and secret key agreement for quantum broadcast channels. IEEE Trans Inf Theory 62(5):2849–2866

    Article  MathSciNet  Google Scholar 

  34. Kim Y-S, Lee J-C, Kwon O, Kim Y-H (2012) Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat Phys 8(2):117–120

    Article  Google Scholar 

  35. Harraz S, Cong S, Nieto JJ (2022) Enhancing quantum teleportation fidelity under decoherence via weak measurement with flips. EPJ Quantum Technol 9(1):1–12

    Article  Google Scholar 

  36. Zong X-L, Du C-Q, Yang M, Song W, Yang Q, Cao Z-L (2015) Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations. Quantum Inf Process 14:3423–3440

    Article  MathSciNet  Google Scholar 

  37. Azuma K, Tamaki K, Lo H-K (2015) All-photonic quantum repeaters. Nat Commun 6(1):6787

    Article  Google Scholar 

  38. Zhou L, Zhang S-S, Zhong W, Sheng Y-B (2020) Multi-copy nested entanglement purification for quantum repeaters. Ann Phys 412:168042

    Article  MathSciNet  Google Scholar 

  39. Dias J, Ralph TC (2017) Quantum repeaters using continuous-variable teleportation. Phys Rev A 95(2):022312

    Article  Google Scholar 

  40. Singh MK, Jiang L, Awschalom DD, Guha S (2021) Key device and materials specifications for repeater enabled quantum internet. IEEE Trans Quantum Eng 2:1–9

    Article  Google Scholar 

  41. Munro WJ, Azuma K, Tamaki K, Nemoto K (2015) Inside quantum repeaters. IEEE J Sel Top Quantum Electron 21(3):78–90

    Article  Google Scholar 

  42. Aharonov Y, Albert DZ, Vaidman L (1988) How the result of measurement of component of the spin of spin-1/2 particle can turn out to be 100. Phys Rev Lett 60(14):1351

    Article  Google Scholar 

  43. Xu Y, Shi L, Guan T, Guo C, Li D, Yang Y, Wang X, Xie L, He Y, Xie W (2018) Optimization of quantum weak measurement system with its working areas. Opt Express 26(16):21119–21131

    Article  Google Scholar 

  44. Harraz S, Cong S, Nieto JJ (2022) Comparison of quantum state protection against decoherence via weak measurement, survey. Int J Quantum Inf 20(04):2250007

    Article  MathSciNet  Google Scholar 

  45. Gillett G, Dalton R, Lanyon B, Almeida M, Barbieri M, Pryde GJ, O’brien J, Resch K, Bartlett S, White A (2010) Experimental feedback control of quantum systems using weak measurements. Phys Rev Lett 104(8):080503

    Article  Google Scholar 

  46. Pegg D (1989) Some new techniques in nuclear magnetic resonance. Contemp Phys 30(2):101–112

    Article  Google Scholar 

  47. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers. Nature 464(7285):45–53

    Article  Google Scholar 

  48. Ballance C, Harty T, Linke N, Sepiol M, Lucas D (2016) High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys Rev Lett 117(6):060504

    Article  Google Scholar 

  49. Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White TC, Mutus J, Fowler AG, Campbell B et al (2014) Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508(7497):500–503

    Article  Google Scholar 

  50. Dür W, Briegel H-J, Cirac JI, Zoller P (1999) Quantum repeaters based on entanglement purification. Phys Rev A 59(1):169

    Article  Google Scholar 

  51. Briegel H-J, Dür W, Cirac JI, Zoller P (1998) Quantum repeaters: the role of imperfect local operations in quantum communication. Phys Rev Lett 81(26):5932

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Number 61973290.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harraz Sajde or Shuang Cong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The initial N-qubit general GHZ state, as described in Eq. (1), can be represented by its corresponding density matrix, given by

$$\begin{aligned} \rho _{\rm in}^N=\left[\begin{array}{ccccc}\alpha ^2&{}\dots &{}\alpha \beta ^\dagger \\ &{}\ddots &{} \\ \alpha \beta &{}\dots &{}\beta ^2 \end{array} \right]_{2^N \times 2^N}. \end{aligned}$$
(A1)

In the first step, a unilateral rotation is applied to the first qubit of the GHZ state. The N-qubit representation of the unilateral rotation is expressed as:

$$\begin{aligned} R_{x}^N=&R_x \otimes \left[ \begin{array}{cccc} 1&{}\quad 0\\ 0&{} \quad 1 \end{array} \right]^{\bigotimes N-1}. \end{aligned}$$
(A2)

Consequently, the state of the N-qubit GHZ state, following the application of the unilateral rotation, is calculated as:

$$\begin{aligned} \rho _{x}^N= R_{x}^N\rho _{\rm in}^N{R_{x}^N}^T=\left[\begin{array}{ccccc}\ddots &{} &{} &{}.^{.^{.}}\\ &{}\left| \beta \right| ^2&{}\alpha \beta &{} \\ &{}\alpha \beta ^\dagger &{}|\alpha |^2&{}\\ .^{.^{.}}&{} &{} &{}\ddots \end{array} \right]_{2^N \times 2^N}. \end{aligned}$$
(A3)

The notation \(A^T\) denotes the transpose of matrix A, this notation is used here, as all elements within the operation matrices are real.

After the unilateral rotation, the GHZ state transfers through ADC. Considering that each qubit of the N-qubit GHZ state undergoes ADC, the corresponding N-qubit Kraus operators of ADC are expressed as:

$$\begin{aligned} E_0=&\underbrace{e_0\otimes e_0\otimes \dots \otimes e_0\otimes e_0}_{N}\\ E_1=&\underbrace{e_0\otimes e_0\otimes \dots \otimes e_0\otimes e_1}_{N}\\&\vdots \\ E_{2^N-1}=&\underbrace{e_1\otimes e_1\otimes \dots \otimes e_1\otimes e_1}_{N}. \end{aligned}$$
(A4)

Hence, the state of N-qubit GHZ state after passing through ADC is given by

$$\begin{aligned} \rho _d^N=\sum _{i=1}^{2^N-1}E_i\rho _{x}^NE_i^T= \left[ \begin{array}{cccc} E_d&{} &{} &{}.^{.^{.}}\\ &{}B_d&{}C_d&{} \\ &{}D_d&{}A_d&{}\\ .^{.^{.}}&{} &{} &{}\ddots \end{array} \right]_{2^N \times 2^N}, \end{aligned}$$
(A5)

where \(A_{d}=\left| \alpha \right| ^2(1-r),B_{d}=|\beta |^2 (1-r)^{N-1},C_{d}=D_{d}^{\dagger }=\alpha \beta \left( 1-r\right) ^ \frac{N}{2} \text { and } E_d=|\alpha |^2r{\left| 0 \right\rangle } {\left\langle 0 \right| } ^{\otimes N-1} +|\beta |^2(r{\left| 0 \right\rangle } {\left\langle 0 \right| } + (1-r){\left| 1 \right\rangle } {\left\langle 1 \right| } )^{\otimes N-1}-\beta ^2 (1-r)^{N-1}({\left| 1 \right\rangle } {\left\langle 1 \right| } )^{\otimes N-1}\) After the ADC, the weak measurement operator in Eq. (3) applies to the first qubit. Therefore, the weak measurement operator for the N-qubit GHZ state is expressed as

$$\begin{aligned} M^N&=M\otimes \underbrace{\left[ \begin{array}{cccc} 1&{}0\\ 0&{}1 \end{array} \right]\otimes \dots \otimes \left[ \begin{array}{cccc} 1&{}0\\ 0&{}1 \end{array} \right]}_{N-1}. \end{aligned}$$
(A6)

Hence, the state of N-qubit GHZ state after employing the weak measurement is derived as

$$\begin{aligned} \rho _m^N=M^N\rho _d^N{M^N}^T=\left[ \begin{array}{cccc} E_m&{} &{} &{}.^{.^{.}}\\ &{}B_m&{}C_m&{} \\ &{}D_m&{}A_m&{}\\ .^{.^{.}}&{} &{} &{}\ddots \end{array} \right]_{2^N \times 2^N}, \end{aligned}$$
(A7)

where \(A_{m}=|\alpha |^2(1-r),B_{m}=|\beta |^2 (1-q)(1-r)^{N-1},C_{m}=D_{m}^{\dagger }=\alpha \beta (1-q)^\frac{1}{2}\left( 1-r\right) ^ \frac{N}{2} \text { and } E_m=(1-q )(|\alpha |^2r{\left| 0 \right\rangle } {\left\langle 0 \right| } ^{\otimes N-1} +|\beta |^2(r{\left| 0 \right\rangle } {\left\langle 0 \right| } + (1-r){\left| 1 \right\rangle } {\left\langle 1 \right| } )^{\otimes N-1}-\beta ^2 (1-r)^{N-1}({\left| 1 \right\rangle } {\left\langle 1 \right| } )^{\otimes N-1})\).

Finally, in the last step, we apply the same unilateral operation as the one before the ADC to restore the state to its initial structure. Hence, the final state after the whole process of protection is represented as

$$\begin{aligned} \rho _f^N=R_{x}^N\rho _{m}^N{R_{x}^N}^T=\left[ \begin{array}{cccc} A_f &{} &{} &{} C_f \\ &{} \ddots &{}.^{.^{.}} &{} \\ &{}.^{.^{.}} &{} E_f &{}\\ D_f &{} &{} &{} B_f \end{array} \right]_{2^N \times 2^N}, \end{aligned}$$
(A8)

where \(A_{f}=|\alpha |^2(1-r),B_{f}=|\beta |^2 (1-q)(1-r)^{N-1},C_{f}=D_{f}^{\dagger }=\alpha \beta (1-q)^\frac{1}{2}\left( 1-r\right) ^ \frac{N}{2} \text { and } E_f=(1-q )(|\alpha |^2r{\left| 0 \right\rangle } {\left\langle 0 \right| } ^{\otimes N-1} +|\beta |^2(r{\left| 0 \right\rangle } {\left\langle 0 \right| } + (1-r){\left| 1 \right\rangle } {\left\langle 1 \right| } )^{\otimes N-1}-\beta ^2 (1-r)^{N-1}({\left| 1 \right\rangle } {\left\langle 1 \right| } )^{\otimes N-1})\).

Appendix B

In WMRPS, before sending qubits through the ADC, weak measurements are employed on all qubits, followed by a subsequent weak measurement reversal after passing through the ADC. Assuming identical parameters (such as measurement strengths and the decay rate of the ADC) for all qubits, the operators for weak measurement, denoted as \(M_{\text {WM}}\), and weak measurement reversal, denoted as \(M_{\text {WMR}}\), are defined as

$$\begin{aligned} M_{\text {WM}}^N = \begin{pmatrix} 1 &{} 0 \\ 0 &{} \sqrt{1 - p_1} \end{pmatrix}^{\otimes N}, \ M_{\text {WMR}}^N = \begin{pmatrix} \sqrt{1 - p_2} &{} 0 \\ 0 &{} 1 \end{pmatrix}^{\otimes N}, \end{aligned}$$
(B9)

where \(p_1\) and \(p_2\) represent the weak measurement and weak measurement reversal strength, respectively. Considering the initial N-qubit GHZ state in Eq. (A1), the density matrix resulting from the application of weak measurement \(M_{\text {WM}}\) on all qubits is represented as

$$\begin{aligned} {\rho _{\text {WM}}^{\text {WMRPS}}}^N=M_{\text {WM}}^N\rho _{\rm in}^N{M_{\text {WM}}^N}^T=\left[ \begin{array}{cccc} F&{} &{} &{} G\\ &{}\ddots &{}.^{.^.}&{} \\ &{}.^{.^.}&{}\ddots &{} \\ H&{} &{} &{} K \end{array} \right]_{2^N \times 2^N}, \end{aligned}$$
(B10)

where \(F_{\text {WM}}=|\alpha |^2, G_{\text {WM}}=H^{\dagger }=\alpha \beta (1-p_1)^\frac{N}{2}\ \text {and} \ K_{\text {WM}}=|\beta |^2 (1-p_1)^{N}\), all other elements of the density matrix at this step are zero.

Subsequently, all qubits will be sent through ADCs, resulting in the transformation of the elements of the density matrix to:

$$\begin{aligned} {\rho _{\text {ADC}}^{\text {WMRPS}}}^N=\sum _{i=1}^{2^N-1}E_i{\rho _{\text {WM}}^{\text {WMRPS}}}^NE_i^T=\left[ \begin{array}{cccc} F_{\text {ADC}}&{} &{}G_{\text {ADC}}\\ &{} L_{\text {ADC}} &{} \\ H_{\text {ADC}}&{} &{} K_{\text {ADC}} \end{array} \right]_{2^N \times 2^N} \end{aligned}$$
(B11)

where \(F_{\text {ADC}}=|\alpha |^2+|\beta |^2 (1-p_1)^{N}r^{N},G_{\text {ADC}}=H^{\dagger }_{\text {ADC}}=\alpha \beta (1-p_1)^\frac{N}{2}r^\frac{N}{2}, K_{\text {ADC}}=|\beta |^2 (1-p_1)^{N}(1-r )^{N}\text {and}\) \(L_{\text {ADC}}=|\beta |^2(1-p_1)^{N}[(r{\left| 0 \right\rangle } {\left\langle 0 \right| } + (1-r){\left| 1 \right\rangle } {\left\langle 1 \right| } )^{\otimes N}-r^{N}{\left| 0 \right\rangle } {\left\langle 0 \right| }^{\otimes N}-(1-r)^{ N}{\left| 1 \right\rangle } {\left\langle 1 \right| } ^{\otimes N}]\).

Finally, by employing the weak measurement reversal \(M_{\text {WMR}}\) on all qubits, the final density matrix after the whole WMRPS is calculated as

$$\begin{aligned} \rho _f^{\text {WMRPS}}=M_{\text {WMR}}^N {\rho _{\text {ADC}}^{\text {WMRPS}}}^N{M_{\text {WMR}}^N}^T=\left[ \begin{array}{cccc} F_f &{} &{} G_f \\ &{} L_f &{}\\ H_f &{} &{} K_f \end{array} \right]_{2^N \times 2^N}, \end{aligned}$$
(B12)

where \(F_f=|\alpha |^2(1-p_2)^{N}+|\beta |^2 (1-p_1)^{N}r^{N}(1-p_2)^{N},G_f=H_f^\dagger =\alpha \beta (1-p_1)^\frac{N}{2}(1-p_2)^\frac{N}{2}r^\frac{N}{2}, \text { and }K_f=|\beta |^2 (1-p_1)^{N}(1-r )^{N}\text { and } L_f=|\beta |^2(1-p_1)^{N}((r(1-p_2){\left| 0 \right\rangle } {\left\langle 0 \right| } + (1-r){\left| 1 \right\rangle } {\left\langle 1 \right| } )^{\otimes N}-(r(1-p_2))^{\otimes N}{\left| 0 \right\rangle } {\left\langle 0 \right| }^{\otimes N}-(1-r)^{N}{\left| 1 \right\rangle } {\left\langle 1 \right| } ^{N})\). Here, we note that the matrix \(\rho _f^{\text {WMRPS}}\) is a \(2^N \times 2^N\) matrix where the elements \(F_f\), \(G_f\), \(H_f\), and \(K_f\) are scalar values located at the corners of the matrix. The central part of the matrix, denoted by \(L_f\), is a \(2^N \times 2^N\) matrix as well whose corner elements are all 0.

Hence, by considering the final state following the entire WMRPS process in Eq. (B12), the success probability of WMRPS is obtained as:

$$\begin{aligned} {P}_\text {WMRPS}&=\text {trace}(\rho _f^{\text {WMRPS}})=F_f+K_f+\text {trace}(L_f)\\ &=| \alpha |^2 (1 - p_{2})^N + | \beta |^2 (1 - p_{1})^N (r(1 - p_{2}) + s)^N. \end{aligned}$$
(B13)

Also, the fidelity of WMRPS is calculated as

$$\begin{aligned}&\text {Fid}_{\text {WMRPS}}=\langle \psi _{\rm in}|\rho _f^\text {WMRPS}|\psi _{\rm in}\rangle = \frac{1}{{P}_{\text {WMRPS}}}\left[ |\alpha |^4(1 - p_2)^N \right. \\ & \quad +|\alpha \beta |^2 (1 - p_1)^Nr^N(1 - p_2)^N \quad + \left. 2|\alpha \beta |^2(1 - p_1)^{\frac{N}{2}}s^{\frac{N}{2}}(1 - p_{r})^{\frac{N}{2}}+|\beta |^4(1 - p_1)^Ns^N\right] . \end{aligned}$$
(B14)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajde, H., Yueyan, W. & Cong, S. Unilateral protection scheme for N-qubit GHZ states against decoherence: a resource-efficient approach. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06101-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06101-0

Keywords

Navigation