Skip to main content
Log in

Supercomputing leverages quantum machine learning and Grover’s algorithm

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The complexity of searching algorithms in classical computing is a classic problem and a research area. Quantum computers and quantum algorithms can efficiently compute some classically hard problems. In addition, quantum machine learning algorithms could be an important avenue to boost existing and new quantum-based technology, reducing the supercomputing requirements for executing such problems. This paper reviews and explores topics such as variational quantum algorithms, kernel methods, and Grover’s algorithm (GA). GA is a quantum search algorithm that achieves a quadratic speed improvement as a quantum classifier. We exploit GA or amplitude amplification to simulate rudimentary classical logical gates into quantum circuits considering AND, XOR, and OR gates. Our experiments in our review suggest that the algorithms discussed can be implemented and verified with relative ease, suggesting that researchers can investigate problems in the areas discussed related to quantum machine learning and more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. David McMahon (2007) Quantum computing explained. Wiley, New Jersey

    MATH  Google Scholar 

  2. Hill DP, Harper A, Malcolm J, McAndrews MS, Mockus SM, Patterson SE, Reynolds T, Baker EJ, Bult CJ, Chesler EJ et al (2019) Cisplatin-resistant triple-negative breast cancer subtypes: multiple mechanisms of resistance. BMC Cancer 19(1):1–13

    Google Scholar 

  3. Bubier J, Hill D, Mukherjee G, Reynolds T, Baker EJ, Berger A, Emerson J, Blake JA, Chesler EJ (2019) Curating gene sets: challenges and opportunities for integrative analysis. Database 2019

  4. Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA (2021) The influence of evolutionary history on human health and disease. Nat Rev Genet 22(5):269–283

    Google Scholar 

  5. Islam SA, Sajed T, Kearney CM, Baker EJ (2015) Predstp: a highly accurate svm based model to predict sequential cystine stabilized peptides. BMC Bioinform 16(1):1–11

    Google Scholar 

  6. Gidney C, Ekerå M (2021) How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits. Quantum 5:433. https://doi.org/10.22331/q-2021-04-15-433

    Article  Google Scholar 

  7. Sadana S, Maccone L, Sinha U (2021) Quantum computers to test fundamental physics or viceversa

  8. Arrazola JM, Jahangiri S, Delgado A, Ceroni J, Izaac J, Száva A, Azad U, Lang RA, Niu Z, Matteo OD, Moyard R, Soni J, Schuld M, Vargas-Hernandez RA, Tamayo-Mendoza T, Aspuru-Guzik A, Killoran N (2021) Differentiable quantum computational chemistry with PennyLane

  9. Emani PS, Warrell J, Anticevic A, Bekiranov S, Gandal M, McConnell MJ, Sapiro G, Aspuru-Guzik A, Baker JT, Bastiani M et al (2021) Quantum computing at the frontiers of biological sciences. Nat Methods 4:1–9

    Google Scholar 

  10. Khanal B, Rivas P, Orduz J (2021) Human activity classification using basic machine learning models. In: 2021 international conference on computational science and computational intelligence (CSCI) . Accepted, to be published soon

  11. Rivas P, Zhao L, Orduz J (2021) Hybrid quantum variational autoencoders for representation learning. In: 2021 international conference on computational science and computational intelligence (CSCI). Accepted, to be published soon

  12. Freedman MH, Kitaev A, Wang Z (2002) Simulation of topological field theories by quantum computers. Commun Math Phys 227(3):587–603

    MathSciNet  MATH  Google Scholar 

  13. Raussendorf R, Browne DE, Briegel HJ (2003) Measurement-based quantum computation on cluster states. Phys Rev A 68:022312. https://doi.org/10.1103/PhysRevA.68.022312

    Article  Google Scholar 

  14. Benioff P (1980) The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J Stat Phys 22(5):563–591

    MathSciNet  MATH  Google Scholar 

  15. Kitaev AY (1997) Quantum computations: algorithms and error correction. Uspekhi Matematicheskikh Nauk 52(6):53–112

    MathSciNet  MATH  Google Scholar 

  16. Penrose R (1971) Applications of negative dimensional tensors. Combinatorial mathematics and its applications 1, 221–244 . See PDF: https://www.mscs.dal.ca/~selinger/papers/graphical-bib/public/Penrose-applications-of-negative-dimensional-tensors.pdf

  17. Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computation by adiabatic evolution. arXiv: Quantum Physics

  18. Childs AM, Farhi E, Preskill J (2001) Robustness of adiabatic quantum computation. Phys Rev A 65(1):012322

    Google Scholar 

  19. IBM: Qiskit. https://qiskit.org/

  20. Anonymous: Grover implementation. Anonymous repository. https://anonymous.4open.science/r/NoRemoving-8DFF/groverAlgo.ipynb

  21. IBM: Grover’s algorithm. website. https://qiskit.org/textbook/ch-algorithms/grover.html (2021)

  22. Leifer MS, Poulin D (2008) Quantum graphical models and belief propagation. Ann Phys 323(8):1899–1946

    MathSciNet  MATH  Google Scholar 

  23. Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum computer. Proc R Soc Lond A Math Phys Sci 400(1818):97–117

    MathSciNet  MATH  Google Scholar 

  24. Mermin ND (2003) From cbits to qbits: teaching computer scientists quantum mechanics. Am J Phys 71(1):23–30. https://doi.org/10.1119/1.1522741

    Article  Google Scholar 

  25. Wittek P (2014) Quantum machine learning: what quantum computing means to data mining. Academic Press, Massachusetts

    MATH  Google Scholar 

  26. Montanaro A (2016) Quantum algorithms: an overview. npj Quantum Inf 2(1):1–8

    Google Scholar 

  27. Shor PW (1999) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev 41(2):303–332

    MathSciNet  MATH  Google Scholar 

  28. Lavor C, Manssur L, Portugal R (2003) Grover’s algorithm: Quantum database search. arXiv preprint quant-ph/0301079

  29. Vartiainen JJ, Niskanen AO, Nakahara M, Salomaa MM (2004) Implementing shor’s algorithm on josephson charge qubits. Phys Rev A 70(1):012319

    Google Scholar 

  30. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):150502

    MathSciNet  Google Scholar 

  31. Schuld M, Killoran N (2019) Quantum machine learning in feature hilbert spaces. Phys Rev Lett 122(4):040504

    Google Scholar 

  32. Schuld M (2021) Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:2101.11020

  33. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195–202

    Google Scholar 

  34. Lloyd S, Mohseni M, Rebentrost P (2013) Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411

  35. Chen G, Fulling SA, Lee H, Scully MO (2001) Grover’s algorithm for multiobject search in quantum computing. Directions in quantum optics. Springer, Berlin, pp 165–175

    Google Scholar 

  36. Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 79:325–328. https://doi.org/10.1103/PhysRevLett.79.325

    Article  Google Scholar 

  37. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual acm symposium on theory of computing, pp 212–219

  38. Rungta P (2009) The quadratic speedup in grover’s search algorithm from the entanglement perspective. Phys Lett A 373(31):2652–2659

    MATH  Google Scholar 

  39. Du Y, Hsieh M-H, Liu T, Tao D (2021) A grover-search based quantum learning scheme for classification. New J Phys 23(2):023020. https://doi.org/10.1088/1367-2630/abdefa

    Article  MathSciNet  Google Scholar 

  40. Nielsen MA, Chuang I (2002) Quantum computation and quantum information. American Association of Physics Teachers

  41. Mandviwalla A, Ohshiro K, Ji B (2018) Implementing grover’s algorithm on the ibm quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data), pp 2531–2537 . IEEE

  42. Zhang K, Rao P, Yu K, Lim H, Korepin V (2021) Implementation of efficient quantum search algorithms on nisq computers. Quantum Inf Process 20(7):1–27

    MathSciNet  Google Scholar 

  43. Schwabe P, Westerbaan B (2016) Solving binary MQ with grover’s algorithm. In: International conference on security, privacy, and applied cyptography engineering. Springer, pp 303–322

  44. Chakraborty K, Maitra S (2016) Application of grover’s algorithm to check non-resiliency of a boolean function. Cryptogr Commun 8(3):401–413

    MathSciNet  MATH  Google Scholar 

  45. Bulger DW (2007) Combining a local search and grover’s algorithm in black-box global optimization. J Optim Theory Appl 133(3):289–301

    MathSciNet  MATH  Google Scholar 

  46. Tezuka H, Nakaji K, Satoh T, Yamamoto N (2022) Grover search revisited: application to image pattern matching. Phys Rev A 105(3):032440

    MathSciNet  Google Scholar 

  47. Nakaji K, Uno S, Suzuki Y, Raymond R, Onodera T, Tanaka T, Tezuka H, Mitsuda N, Yamamoto N (2022) Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. Phys Rev Res 4(2):023136

    Google Scholar 

  48. Tsang IW, Kwok JT, Cheung P-M, Cristianini N (2005) Core vector machines: fast svm training on very large data sets. J Mach Learn Res 6(4)

  49. Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys Rev Lett 113(13):130503

    Google Scholar 

  50. Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, McClean JR, Mitarai K, Yuan X, Cincio L et al (2021) Variational quantum algorithms. Nat Rev Phys 1–20

  51. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Massachusetts

    MATH  Google Scholar 

  52. Khanal B, Rivas P, Orduz J, Zhakubayev A (2021) Quantum machine learning: a case study of grover’s algorithm. In: The 19th International Conference on Scientific Computing (CSC 2021)

  53. Team TQ (2022) Simulating molecules using VQE. Data 100 at UC Berkeley . https://qiskit.org/textbook/ch-applications/vqe-molecules.html

  54. Team TP Variational classifier. https://pennylane.ai/qml/demos/tutorial_variational_classifier.html

  55. Park DK, Blank C, Petruccione F (2020) The theory of the quantum kernel-based binary classifier. Phys Lett A 384(21):126422

    MathSciNet  MATH  Google Scholar 

  56. Schuld M, Petruccione F (2021) Machine learning with quantum computers. Springer, Berlin

    MATH  Google Scholar 

  57. Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, MA, USA

    Google Scholar 

  58. IBM Q (2021) IBM Quantum. Website: https://www.ibm.com/quantum-computing/

  59. Endo S, Benjamin SC, Li Y (2018) Practical quantum error mitigation for near-future applications. Phys Rev X 8(3)

  60. Endo S, Cai Z, Benjamin SC, Yuan X (2021) Hybrid quantum-classical algorithms and quantum error mitigation. J Phys Soc Japn 90(3):032001

    Google Scholar 

  61. Strikis A, Qin D, Chen Y, Benjamin SC, Li Y (2021) Learning-based quantum error mitigation. PRX. Quantum 2(4):040330

    Google Scholar 

  62. Elben A, Vermersch B, van Bijnen R, Kokail C, Brydges T, Maier C, Joshi MK, Blatt R, Roos CF, Zoller P (2020) Cross-platform verification of intermediate scale quantum devices. Phys Rev Lett 124(1):010504

    Google Scholar 

  63. Lidar DA (2008) Towards fault tolerant adiabatic quantum computation. Phys Rev Lett 100(16):160506

    Google Scholar 

  64. Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52(4):2493

    Google Scholar 

  65. Hsu L-Y (2003) Quantum secret-sharing protocol based on grover’s algorithm. Phys Rev A 68(2):022306

    Google Scholar 

  66. Grassl M, Langenberg B, Roetteler M, Steinwandt R (2016) Applying grover’s algorithm to aes: quantum resource estimates. Post-quantum cryptography. Springer, Berlin, pp 29–43

    MATH  Google Scholar 

  67. Fujiwara S, Hasegawa S (2005) General method for realizing the conditional phase-shift gate and a simulation of grover’s algorithm in an ion-trap system. Phys Rev A 71(1):012337

    Google Scholar 

  68. Aumasson J-P (2017) The impact of quantum computing on cryptography. Comput Fraud Secur 2017(6):8–11

    Google Scholar 

  69. Mavroeidis V, Vishi K, Zych MD, Jøsang A (2018) The impact of quantum computing on present cryptography. arXiv preprint arXiv:1804.00200

  70. Brassard G (1994) Quantum computing: the end of classical cryptography? ACM SIGACT News 25(4):15–21

    Google Scholar 

  71. Brassard G, Lütkenhaus N, Mor T, Sanders BC (2000) Limitations on practical quantum cryptography. Phys Rev Lett 85(6):1330

    MATH  Google Scholar 

  72. Adcock J, Allen E, Day M, Frick S, Hinchliff J, Johnson M, Morley-Short S, Pallister S, Price A, Stanisic S (2015) Advances in quantum machine learning. arXiv preprint arXiv:1512.02900

Download references

Acknowledgements

We would like to thank the Department of Computer Science and Baylor.AI laboratory at Baylor University for their support. We acknowledge the use of IBM Quantum services for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Quantum team. J. O. executed most of this work while at Baylor University.

Funding

This work was supported in part by the National Science Foundation under grants CNS-2136961, and CNS-2210091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Rivas.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanal, B., Orduz, J., Rivas, P. et al. Supercomputing leverages quantum machine learning and Grover’s algorithm. J Supercomput 79, 6918–6940 (2023). https://doi.org/10.1007/s11227-022-04923-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04923-4

Keywords

Navigation