Skip to main content
Log in

Automatic segmentation of gallbladder using bio-inspired algorithm based on a spider web construction model

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In medical image processing, an accurate segmentation and classification are very important and this field still needs an effective computer-based algorithm for accomplishing the task. In gallbladder segmentation, only few automatic segmentation methodologies have been presented. The accuracy is very important in medical image processing for accurate diagnosis of the disease. In this paper, by exploiting the basic web building behavior of spiders, we developed a bio-inspired algorithm based on the spider web construction process for image segmentation process in medical images. The aim of this paper is to detect the shape of the gallbladder and to segment the gallstones and polyps located inside the gallbladder using a computer-based algorithm. It is necessary to apply a suitable preprocessing method in order to eliminate the irregularities presenting in the ultrasound scan images. In the preprocessing stage, histogram equalization and DooG filter are applied to enhance the contrast of the image. After that, the proposed spider web algorithm is applied in the segmentation process. The performance metrics of the proposed method are evaluated by implementing the proposed method to test the input dataset of 60 patients and it is compared with the results obtained from conventional segmentation methods. The values of DSC, OF, OV and PE for images with no lesions are 0.873167, 0.8389, 0.81705 and 0.81452.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vision 22:61. https://doi.org/10.1023/A:1007979827043

    Article  MATH  Google Scholar 

  2. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321. https://doi.org/10.1007/BF00133570

    Article  MATH  Google Scholar 

  3. Kichenassamy S, Kumar A, Olver P et al (1996) Conformal curvature flows: from phase transitions to active vision. Arch Ration Mech Anal 134:275. https://doi.org/10.1007/BF00379537

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen LD (1991) On active contour models and balloons. In: CVGIP: Image Understanding, vol 53(2), pp 211–218. ISSN 1049-9660. https://doi.org/10.1016/1049-9660(91)90028-N. http://www.sciencedirect.com/science/article/pii/104996609190028N

  5. Yezzi A, Tsai A, Willsky A (1999) A statistical approach to snakes for bimodal and trimodal imagery. In: The Proceedings of the 7th IEEE International Conference on Computer Vision, vol 2. IEEE. https://doi.org/10.1109/ICCV.1999.790317

  6. Nakhmani A, Tannenbaum A (2012) Self-crossing detection and location for parametric active contours. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2012.2188808

    MathSciNet  MATH  Google Scholar 

  7. Piotr Makowski P, Sorensen TS, Therkildsen SV, Materka A, Jorgensen HS, Pedersen EM (2002) Two-phase active contour method for semiautomatic segmentation of the heart and blood vessels from MRI images for 3D visualization. Comput Med Imaging Graph 26(1), pp 9–17. ISSN 0895-6111. https://doi.org/10.1016/S0895-6111(01)00026-X. http://www.sciencedirect.com/science/article/pii/S089561110100026X

  8. Bodzioch S, Ogiela MR (2009) New approach to gallbladder ultrasonic images analysis and lesions recognition. Comput Med Imaging Graph 33(2):154–170. https://doi.org/10.1016/j.compmedimag.2008.11.003

    Article  Google Scholar 

  9. Ciecholewski M (2010) Gallbladder boundary segmentation from ultrasound images using active contour model. In: Fyfe C, Tino P, Charles D, Garcia-Osorio C, Yin H (eds) Intelligent data engineering and automated learning—IDEAL 2010. IDEAL 2010. Lecture notes in computer science, vol 6283. Springer, Berlin

    Google Scholar 

  10. Ciecholewski M (2011) Ada boost-based approach for detecting lithiasis and polyps in USG images of the gallbladder. In: Badioze Zaman H et al (eds) Visual informatics: sustaining research and innovations. IVIC 2011. Lecture notes in computer science, vol 7066. Springer, Berlin

    Google Scholar 

  11. Ciecholewski M, Chochołowicz J (2013) Gallbladder shape extraction from ultrasound images using active contour models. Comput Biol Med 43(12):2238–2255. https://doi.org/10.1016/j.compbiomed.2013.10.009

    Article  Google Scholar 

  12. Lian J, Ma Y et al (2017) Automatic gallbladder and gallstone regions segmentation in ultrasound image. Int J CARS 12(4):553–568. https://doi.org/10.1007/s11548-016-1515-z

    Article  Google Scholar 

  13. Xie W et al (2013) Gallstone segmentation and extraction from ultrasound images using level set model. In: Biosignals and Biorobotics Conference (BRC), 2013 ISSNIP. IEEE

  14. Obadia BL, Gee A (1999) Adaptive segmentation of ultrasound images. Image Vis Comput 17(8):583–588. https://doi.org/10.1016/S0262-8856(98)00177-2 ISSN 0262-8856

    Article  Google Scholar 

  15. Wimmer A, Soza G, Hornegger J (2009) A generic probabilistic active shape model for organ segmentation. In: Yang GZ, Hawkes D, Rueckert D, Noble A, Taylor C (eds) Medical image computing and computer-assisted intervention—MICCAI 2009. MICCAI 2009. Lecture notes in computer science, vol 5762. Springer, Berlin

    Google Scholar 

  16. Abolmaesumi P, Sirouspour MR (2004) An interacting multiple model probabilistic data association filter for cavity boundary extraction from ultrasound images. IEEE Trans Med Imaging 23(6):772–784

    Article  Google Scholar 

  17. Gloger O et al (2017) Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences. Magn Reson Mater Phys Biol Med 2017:1–15

    Google Scholar 

  18. Saito A, Nawano S, Shimizu A (2017) Fast approximation for joint optimization of segmentation, shape, and location priors, and its application in gallbladder segmentation. Int J CARS 12:743. https://doi.org/10.1007/s11548-017-1571-z

    Article  Google Scholar 

  19. Arunkumar N, Ramkumar K, Venkatraman V, Abdulhay E, Fernandes SL, Kadry S, Segal S (2017) Classification of focal and non focal EEG using entropies. Pattern Recognit Lett 94:112–117

    Article  Google Scholar 

  20. Arunkumar N, Kumar KR, Venkataraman V (2016) Automatic detection of epileptic seizures using new entropy measures. J Med Imaging Health Inform 6(3):724–730

    Article  Google Scholar 

  21. Fernandes SL, Gurupur VP, Sunder NR, Arunkumar N, Kadry SA (2017) Novel nonintrusive decision support approach for heart rate measurement. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2017.07.002

    Google Scholar 

  22. Hamza R, Muhammad K, Arunkumar N (2017) González GR (2017) Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access, New York

    Google Scholar 

  23. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks (Perth, Australia), vol 5(3). IEEE Service Center, Piscataway, pp 1942–1948

  24. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  25. Abbass HA (2001) MBO: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol 1. IEEE

  26. Martin R, Stephen W (2006) Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks. In: Stigmergic Optimization. Studies in Computational Intelligence, vol 31. Springer, Berlin, pp 155–184

  27. Neshat M, Sepidnam G, Sargolzaei M et al (2014) Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev 42:965–997. https://doi.org/10.1007/s10462-012-9342-2

    Article  Google Scholar 

  28. Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP Conference Proceedings, vol 953(1). AIP

  29. Yang XS, Deb S (2009) Cuckoo search via levy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC), Coimbatore, pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  30. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspir Comput 2(2):78–84

    Article  Google Scholar 

  31. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. In: Advances in Engineering Software, vol 69, pp 46–61. ISSN 0965-9978. https://doi.org/10.1016/j.advengsoft.2013.12.007. http://www.sciencedirect.com/science/article/pii/S0965997813001853

  32. Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1): 24–36. ISSN 2288-4300. https://doi.org/10.1016/j.jcde.2015.06.003. http://www.sciencedirect.com/science/article/pii/S2288430015000524

  33. Li C, Duan H (2014) Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function. In: Aerospace Science and Technology, vol 39, pp 352–360. ISSN 1270-9638. https://doi.org/10.1016/j.ast.2014.10.007. http://www.sciencedirect.com/science/article/pii/S1270963814002053

  34. Mirjalili S, Lewis A (2016) The whale optimization algorithm. In: Advances in engineering software, vol 95, pp 51–67. ISSN 0965-9978. https://doi.org/10.1016/j.advengsoft.2016.01.008. http://www.sciencedirect.com/science/article/pii/S0965997816300163

  35. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  36. Sanz SS, Del Ser J, Torres IL, Lopez SG, Figueras JAP (2014) The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci World J, 15 pages. Article ID 739768. https://doi.org/10.1155/2014/739768

  37. Yu JJQ, Li VOK (2016) A social spider algorithm for solving the non-convex economic load dispatch problem. In: Neurocomputing, vol 171, pp 955–965. ISSN 0925-2312. https://doi.org/10.1016/j.neucom.2015.07.037. http://www.sciencedirect.com/science/article/pii/S0925231215010188

  38. Liu Z et al (2016) A new search algorithm of MBD based on spider web and its application in power distribution network fault diagnosis. Int J Artif Intell Tools 25(02):1650002

    Article  Google Scholar 

  39. Anter AM, Hassanien AE, ElSoud MA, Kim TH (2015) Feature selection approach based on social spider algorithm: case study on abdominal CT liver tumor. In: 2015 7th International Conference on Advanced Communication and Networking (ACN), Kota Kinabalu, pp 89-94. https://doi.org/10.1109/ACN.2015.32

  40. Ouadfel S, Ahmed AT (2016) Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. In: Expert Systems with Applications, vol 55, pp 566–584. ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2016.02.024

  41. Muneeswaran V, Rajasekaran MP (2018) Beltrami-regularized denoising filter based on tree seed optimization algorithm: an ultrasound image application. In: Satapathy S, Joshi A (eds) Information and communication technology for intelligent systems (ICTIS 2017)—volume 1. ICTIS 2017. Smart innovation, systems and technologies, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-63673-3_54

    Google Scholar 

  42. Muneeswaran V, Rajasekaran MP (2017) Analysis of particle swarm optimization based 2D FIR filter for reduction of additive and multiplicative noise in images. In: Arumugam S, Bagga J, Beineke L, Panda B (eds) Theoretical computer science and discrete mathematics. ICTCSDM 2016. Lecture notes in computer science, vol 10398. Springer, Cham. https://doi.org/10.1007/978-3-319-64419-6_22

    Google Scholar 

  43. Abdel-Basset M, El-Shahat D, Sangaiah AK (2017) A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-017-0731-3

    Google Scholar 

  44. Abdel-Basset M, Fakhry AE, El-henawy I, Qiu T, Sangaiah AK (2017) Feature and intensity based medical image registration using particle swarm optimization. J Med Syst 41(12):197. https://doi.org/10.1007/s10916-017-0846-9

    Article  Google Scholar 

  45. Abdel-Basset M, Shawky LA, Sangaiah AK (2017) A comparative study of cuckoo search and flower pollination algorithm on solving global optimization problems. Libr Hi Tech. https://doi.org/10.1108/LHT-04-2017-0077

    Google Scholar 

  46. Firdaus A, Anuar NB, Ab Razak MF, Sangaiah AK (2017) Bio-inspired computational paradigm for feature investigation and malware detection: interactive analytics. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4586-0

    Google Scholar 

  47. Goyal RK, Kaushal S, Sangaiah AK (2017) The utility based non-linear fuzzy AHP optimization model for network selection in heterogeneous wireless networks. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2017.05.026

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. P. Vijay Babu, MBBS, DMRD, Consultant Radiologist, Vijay Scans, Rajapalayam, Tamil Nadu, for supporting the research by providing Ultrasound images and necessary patient information. The author would like to thank the management of Kalasalingam University for providing financial assistance under the University Research Fellowship. Also we thank the Department of Electronics and Communication Engineering of Kalasalingam University, Tamil Nadu, India, for permitting to use the computational facilities available in Centre for Research in Signal Processing and VLSI Design which was set up with the support of the Department of Science and Technology (DST), New Delhi, under FIST Program in 2013 (Reference No. SR/FST/ETI-336/2013 dated November 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Muneeswaran.

Ethics declarations

Conflict of interest

Both authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneeswaran, V., Rajasekaran, M.P. Automatic segmentation of gallbladder using bio-inspired algorithm based on a spider web construction model. J Supercomput 75, 3158–3183 (2019). https://doi.org/10.1007/s11227-017-2230-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2230-4

Keywords

Navigation