Skip to main content

Cross Entropy Based Thresholding Segmentation of Magnetic Resonance Prostatic Images Using Metaheuristic Algorithms

  • Chapter
  • First Online:
Metaheuristics in Machine Learning: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 967))

  • 1532 Accesses

Abstract

Magnetic resonance images are relevant sources of information for detecting and diagnosing a large number of illnesses and abnormalities. Segmentation of digital images helps to classify the pixels in the different regions according to their intensity level. Segmentation of digital images implemented on magnetic resonance images can help experts to improve the performance of evaluations and make a correct differential diagnosis to indicate the appropriate treatment. This chapter proposes the use of MFO, SCA and SFO algorithms to search for 2, 3, 4, 5, 8, 16 and 32 threshold values using minimum cross entropy function to segment prostatic magnetic resonance images, and implementing statistical metrics like PSNR, SSIM, and FSIM to measure the quality of a segmented image, quantified and establish the proper comparison frame, so visual comparison is not enough. The approach is tested on a set of benchmark images to demonstrate that the segmentation of digital images can improve the detection of prostatic abnormalities or illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bezdek, J., Hall, L., Clarke, L, Review of MR image segmentation techniques using pattern recognition. Med. Phys. 1033–1048 (1993)

    Google Scholar 

  2. Sociedad Mexicana de Urología Colegio de Profesionistas AC, Sociedad Mexicana de Urología (2020). Recuperado el 25 de Abril de 2020, de La prostata y sus enfermedades: https://www.smu.mx/Pacientes.php

  3. Suzukii, H., Toriwakii, J.-I., automatic segmentation of head mri images by knowledge guided thresholding, in Compurerized Medrcol Imaging and Graphics, vol. 15, issue No. 4, pp. 233–240 [8]

    Google Scholar 

  4. Hinojosa, S., Pajares, G., Cuevas, E., Ortega-Sanchez, N., Thermal image segmentation using evolutionary computation techniques, in Advances in Soft Computing and Machine Learning in Image Processing, pp 63–88 , 26 (2017)

    Google Scholar 

  5. Yang, X.-S., A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization, vol. 10 (2010), pp 65–74

    Google Scholar 

  6. D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988). https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  7. Mirjalili, S. (2015). Moth-Flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 45

    Google Scholar 

  8. J.H. Holland, Outline for a Logical theory of adaptive systems. J. ACM 9, 297–314 (1962)

    Article  Google Scholar 

  9. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. (2016)

    Google Scholar 

  10. S. Hinojosa, O. Avalos, D. Oliva, E. Cuevas, G. Pajares, D. Zaldivar et al., Unassisted Thresholding based on multi-objective evolutionary algorithms. Knowl.-Based Syst. 159, 221–232 (2018)

    Article  Google Scholar 

  11. Mirjalili, S. (22 de 05 de 2018). Moth-flame Optimization (MFO) Algorithm. Recuperado el 20 de 03 de 2020. de https://la.mathworks.com/matlabcentral/fileexchange/52269-moth-flame-optimization-mfo-algorithm?s_tid=srchtitle

  12. S. Arora, Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recogn. Lett. 29(2), 119–125 (2008)

    Article  Google Scholar 

  13. Gomes, G. (10 de 10 de 2018). Sunflower optimization (sfo) algorithm. Recuperado el 28 de 03 de 2020. de https://la.mathworks.com/matlabcentral/fileexchange/69076-sunflower-optimization-sfo-algorithm?s_tid=srchtitle

  14. Ferreira Gomes, G., Simões da Cunha Jr., S., Ancelotti Jr., A.C., A Sunflower Optimization (SFO) Algorithm Applied to Damage, vol. 8 (Springer Nature, 2018)

    Google Scholar 

  15. C.H. Li, C.K. Lee, Minimum cross entropy thresholding. Pattern Recogn. 26(4), 617–625 (1993)

    Article  Google Scholar 

  16. S. Kullback, Information Theory and Statistics (Wiley, New York, 1959).

    MATH  Google Scholar 

  17. R.C. Gonzalez, R.E. Woods, Digital Image Processing (Pearson, Prentice-Hall, New Jersey, 1992).

    Google Scholar 

  18. Diego, O., Salvador, H., Osuna-Enciso, V., Cuevas, E., Pérez-Cisneros, M., Sanchez-Ante, G., Image segmentation by minimum cross entropy using evolutionary methods. Soft Comput. 1–20 (2017).https://doi.org/10.1007/s00500-017-2794-1

  19. The Ferenc Jolesz National Center for Image Guided Therapy, Harvard Medical School, Brighman Health Hospital, Prostate MR Image Database (2020). Retrieved 28 Feb 2020 from https://prostatemrimagedatabase.com/Database/000004/00002/009/index.html

  20. P. Ghamisi, M.S. Couceiro, J.A. Benediktsson, N.M. Ferreira, An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39(16), 12407–12417 (2012)

    Article  Google Scholar 

  21. O. Il-Seok, L. J.-S.-R. , Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26, 1424–1437 (2004). https://doi.org/10.1109/TPAMI.2004.105

    Article  Google Scholar 

  22. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  23. D. Zhang, A feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Zárate .

Editor information

Editors and Affiliations

Appendix: MRIs Detailed Series Header Information

Appendix: MRIs Detailed Series Header Information

  • sh.ExamDescription = ‘PROSTATE STAGING’;

  • sh.SeriesDescription = ‘T1 AXIAL (COIL OUT) 2 STACKS’;

  • sh.SequenceName = ‘MEMP’;

  • sh.PatientAge = 60;

  • sh.PatientWeight = 80,000;

  • sh.FieldStrength = 15,000;

  • sh.SeriesDate = ‘Day 1′;

  • sh.RepetitionTime = 700,000;

  • sh.EchoTime = 8000;

  • sh.Excitations = 2;

  • sh.FlipAngle = 90;

  • sh.FrequencyDirection = ‘Row’;

  • sh.SliceThickness = 5;

  • sh.MatrixSize = [256 256];

  • sh.PixelSize = [1.093750 1.093750];

  • sh.Fov = [280 280];

  • sh.PixelValueOffset = 0;

  • sh.NumberOfImages = 46;

  • sh.Gamma = 1;

  • sh.ImagePositionPatient1 = [−139.453125 − 156.053131 211.800003];

  • sh.ImageOrientationPatient1 = [1 0 0 0 1 0];

  • sh.ImagePositionPatientN = [−139.453125 − 156.053131 − 58.200001];

  • sh.ImageOrientationPatientN = [1 0 0 0 1 0];

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zárate, O., Záldivar, D. (2021). Cross Entropy Based Thresholding Segmentation of Magnetic Resonance Prostatic Images Using Metaheuristic Algorithms. In: Oliva, D., Houssein, E.H., Hinojosa, S. (eds) Metaheuristics in Machine Learning: Theory and Applications. Studies in Computational Intelligence, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-030-70542-8_1

Download citation

Publish with us

Policies and ethics