The Journal of Supercomputing

, Volume 73, Issue 5, pp 2018–2051 | Cite as

A particle swarm optimization and min–max-based workflow scheduling algorithm with QoS satisfaction for service-oriented grids

  • Faruku Umar Ambursa
  • Rohaya Latip
  • Azizol Abdullah
  • Shamala Subramaniam
Article
  • 264 Downloads

Abstract

In service-orientated grids (SOG) environments, grid workflow schedulers play a critical role in providing quality-of-service (QoS) satisfaction for various end users (EUs) with diverse QoS objectives and optimization requirements. The EU requirements are not only many and conflicting, but also involve constraints of various degrees—loose, moderate or tight. However, most of the existing scheduling approaches violate EU constraints in tight situations and suffer inferior QoS optimization results. In this paper, a constraints-aware multi-QoS workflow scheduling strategy is proposed based on particle swarm optimization (PSO) and a proposed look-ahead heuristic (LAPSO) to improve performance in such situations. The algorithm selects the best scheduling solutions based on the proposed constraint-handling strategy. It hybridises PSO with a novel look-ahead mechanism based on a min–max heuristic, which deterministically improves the quality of the best solutions. Extensive simulation experiments have been carried out to evaluate the performance of the proposed approach. The simulation results show that the LAPSO algorithm guarantees satisfaction (0% violation) of the EU constraints even in tight situations. It also outperforms the comparison algorithm, with about 30% increase, in terms of cumulative QoS satisfaction of optimization requirements. In addition, the new scheme significantly reduces the CPU time by about 75% compared to the benchmark algorithm.

Keywords

Service-orientated grid computing Workflow application Scheduling multiple QoS Particle swarm optimization (PSO) 

Notes

Acknowledgments

The authors are grateful for the funding of this work by Universiti Putra Malaysia.

References

  1. 1.
    Foster I, Kesselman C (2003) The Grid 2: blueprint for a new computing infrastructure, 2nd edn. Elsevier and Morgan Kaufmann Press, USA. http://store.elsevier.com/The-Grid-2/isbn-9781558609334/
  2. 2.
    Albodour R, James A, Yaacob N (2015) QoS within business grid quality of service (BGQoS). Futur. Gener. Comput. Syst. 50:22–37. doi: 10.1016/j.future.2014.10.027 CrossRefGoogle Scholar
  3. 3.
    Merlo A, Clematis A, Corana A, Gianuzzi V (2011) Quality of service on grid: architectural and methodological issues. Concurr Comput Pract Exp 23:745–766. doi: 10.1002/cpe.1641 CrossRefGoogle Scholar
  4. 4.
    Azmi ZRM, Ameedeen MA, Kamarudin IE (2015) Multi-objective functions in grid scheduling. In: Sulaiman HA, Othman MA, Othman MFI, Rahim YA, Pee NC (eds) Advanced computer and communication engineering technology, Springer, pp 501–524. doi: 10.1007/978-3-319-07674-4_49
  5. 5.
    Chen W-N, Zhang J (2009) An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements. Trans Syst Man Cyber Part C 39:29–43. doi: 10.1109/TSMCC.2008.2001722 CrossRefGoogle Scholar
  6. 6.
    Kyriazis D, Tserpes K, Menychtas A, Litke A, Varvarigou T (2008) An innovative workflow mapping mechanism for grids in the frame of quality of service. Futur Gener Comput Syst 24:498–511. doi: 10.1016/j.future.2007.07.009 CrossRefGoogle Scholar
  7. 7.
    Fard HM, Prodan R, Fahringer T (2014) Multi-objective list scheduling of workflow applications in distributed computing infrastructures. J Parallel Distrib Comput 74:2152–2165. doi: 10.1016/j.jpdc.2013.12.004 CrossRefMATHGoogle Scholar
  8. 8.
    Garg R, Singh AK (2014) Multi-objective workflow grid scheduling using-fuzzy dominance sort based discrete particle swarm optimization. J Supercomput 68:709–732. doi: 10.1007/s11227-013-1059-8 CrossRefGoogle Scholar
  9. 9.
    Abudhagir US, Shanmugavel S (2014) A novel dynamic reliability optimzed resource scheduling algorithm for grid computing system. Arab J Sci Eng 39:7087–7096. doi: 10.1007/s13369-014-1305-2 CrossRefGoogle Scholar
  10. 10.
    Aron R, Chana I, Abraham A (2015) A hyper-heuristic approach for resource provisioning-based scheduling in grid environment. J Supercomput 71:1427–1450. doi: 10.1007/s11227-014-1373-9
  11. 11.
    Salimi R, Motameni H, Omranpour H (2014) Task scheduling using NSGA II with fuzzy adaptive operators for computational grids. J Parallel Distrib Comput 74:2333–2350. doi: 10.1016/j.jpdc.2014.01.006 CrossRefGoogle Scholar
  12. 12.
    Kianfar K, Moslehi G, Yahyapour R (2015) A novel metaheuristic algorithm and utility function for QoS based scheduling in user-centric grid systems. J Supercomput 71:1143–1162. doi: 10.1007/s11227-014-1358-8 CrossRefGoogle Scholar
  13. 13.
    Arabnejad H, Barbosa JG (2014) A budget constrained scheduling algorithm for workflow applications. J Grid Comput 12:665–679. doi: 10.1007/s10723-014-9294-7 CrossRefGoogle Scholar
  14. 14.
    Khajemohammadi H, Fanian A, Gulliver TA (2014) Efficient workflow scheduling for grid computing using a leveled multi-objective genetic algorithm. J Grid Comput 12:637–663. doi: 10.1007/s10723-014-9306-7 CrossRefGoogle Scholar
  15. 15.
    Wang M, Zhu L, Ramamohanarao K (2015) Reasoning task dependencies for robust service selection in data intensive workflows. Computing 97:337–355. doi: 10.1007/s00607-013-0381-6 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wang X, Yeo CCS, Buyya R, Su J (2011) Optimizing the makespan and reliability for workflow applications with reputation and a look-ahead genetic algorithm. Futur Gener Comput Syst 27:1124–1134. doi: 10.1016/j.future.2011.03.008 CrossRefGoogle Scholar
  17. 17.
    Garg SK, Buyya R, Siegel HJ (2010) Time and cost trade-off management for scheduling parallel applications on Utility Grids. Futur Gener Comput Syst 26:1344–1355. doi: 10.1016/j.future.2009.07.003 CrossRefGoogle Scholar
  18. 18.
    Arabnia HR, Fang WC, Lee C, Zhang Y (2010) Context-Aware middleware and intelligent agents for smart environments. IEEE Intell Syst 25:10–11Google Scholar
  19. 19.
    Luper D, Cameron D, Miller JA, Arabnia HR (2007) Spatial and temporal target association through semantic analysis and GPS data mining. In: 5th International Conference on Information and Knowledge Engineering, pp 25–28Google Scholar
  20. 20.
    Motavaselalhagh F, Safi Esfahani F, Arabnia H (2015) Knowledge-based adaptable scheduler for SaaS providers in cloud computing. Human-Centric Comput Inf Sci 5:1–19. doi: 10.1186/s13673-015-0031-4 CrossRefGoogle Scholar
  21. 21.
    Rahbarinia B, Pedram MM, Arabnia HR, Alavi Z (2010) A MultiObjective scheme to hide sequential patterns. In: Proc. 2010 Int. Conf. Comput. Autom. Eng. (ICCAE). IEEE, Singapore, n.d, pp 53158Google Scholar
  22. 22.
    Ter Mors A, Valk J, Witteveen C, Arabnia HR, Mun Y (2004) Coordinating autonomous planners. In: Int. Conf. Artif. Intell., USA, pp 795–801Google Scholar
  23. 23.
    Pourhaji AA, Kazem H, Pedram H Abolhassani, BNQM, (2015) A Bayesian network based QoS model for grid service composition. Expert Syst Appl 42:6828–6843. doi: 10.1016/j.eswa.2015.04.045
  24. 24.
    Tao Q, Chang HY, Yi Y, Gu CQ, Li WJ (2011) A rotary chaotic PSO algorithm for trustworthy scheduling of a grid workflow. Comput Oper Res 38:824–836. doi: 10.1016/j.cor.2010.09.012 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kennedy J, Kennedy J, Eberhart R, Shi Y (2016) Swarm intelligence, Morgan Kaufmann, 2001. https://books.google.com/books?hl=en&lr=&id=vOx-QV3sRQsC&oi=fnd&pg=PR13&dq=Swarm+intelligence&ots=-P90ec9jos&sig=ztAeS7RqjGnpLlos6JfpsxXxPTM. Accessed 8 Oct 2016
  26. 26.
    Mirzayi S, Rafe V (2015) A hybrid heuristic workflow scheduling algorithm for cloud computing environments, J Exp Theor Artif Intell 27:721–735. doi: 10.1080/0952813X.2015.1020524
  27. 27.
    Misra KB, Sharma U (1991) An effective approach for multiple criteria redundancy optimization problems. Microelectron Reliab 31:303–321CrossRefGoogle Scholar
  28. 28.
    Coit DW, Konak A (2006) Multiple weighted objectives heuristic for the redundancy allocation problem. IEEE Trans Reliab 55:551–558CrossRefGoogle Scholar
  29. 29.
    Izakian H, Abraham A, Snášel V (2009) Comparison of heuristics for scheduling independent tasks on heterogeneous distributed environments. In: Proc. 2009 Int. Jt. Conf. Comput. Sci. Optim. CSO 2009, pp 8–12. doi: 10.1109/CSO.2009.487
  30. 30.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc. ICNN’95 - Int. Conf. Neural Networks, Ieee, 1995, pp 1942–1948. doi: 10.1109/ICNN.1995.488968
  31. 31.
    Kang Q, He H (2011) A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems. Microprocess Microsyst 35:10–17. doi: 10.1016/j.micpro.2010.11.001 CrossRefGoogle Scholar
  32. 32.
    Kianpisheh S, Charkari NM, Kargahi M (2016) Reliability-driven scheduling of time/cost-constrained grid workflows. Futur Gener Comput Syst 55:1–16. doi: 10.1016/j.future.2015.07.014 CrossRefGoogle Scholar
  33. 33.
    Albodour R, James A, Yaacob N (2012) High level QoS-driven model for Grid applications in a simulated environment. Futur Gener Comput Syst 28:1133–1144. doi: 10.1016/j.future.2011.06.013 CrossRefGoogle Scholar
  34. 34.
    Taverna (n.d.). http://www.taverna.org.uk/. Accessed 3 Feb 2016
  35. 35.
    ASKALON, (n.d.). http://www.askalon.org/. Accessed 3 Feb 2016
  36. 36.
    Pegasus, (n.d.). https://pegasus.isi.edu/. Accessed 3 Feb 2016
  37. 37.
    Field L, Memon S, Márton I, Szigeti G (2013) The EMI registry: discovering services in a federated world. J Grid Comput 12:29–40. doi: 10.1007/s10723-013-9284-1 CrossRefGoogle Scholar
  38. 38.
    Topcuoglu, H, Hariri S, I.C. Society (2002) Performance-effective and low-complexity. Parallel Distrib Syst IEEE Trans 13:260–274Google Scholar
  39. 39.
    Malik Z, Akbar I, Bouguettaya A (2009) Web services reputation assessment using a hidden markov model. Serv Comput 576–591. http://link.springer.com/chapter/10.1007/978-3-642-10383-4_42. Accessed 29 June 2015
  40. 40.
    Kurowski K, Nabrzyski J (2015) Multicriteria aspects of grid resource management. Springer US, 2004. http://link.springer.com/chapter/10.1007/978-1-4615-0509-9_18. Accessed 29 June 2015
  41. 41.
    Pulido GT, C. a. C. Coello () A constraint-handling mechanism for particle swarm optimization. In: Proc. 2004 Congr. Evol. Comput. (IEEE Cat. No.04TH8753). IEEE, n.d., pp 1396–1403. doi: 10.1109/CEC.2004.1331060
  42. 42.
    Tao Q, Chang H, Yi Y, Gu C (2010) A grid workflow scheduling optimization approach for e-business application. In: Proc. Int. Conf. E-Bus. E-Government, ICEE, pp 168–171. doi: 10.1109/ICEE.2010.50

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Faruku Umar Ambursa
    • 1
  • Rohaya Latip
    • 1
  • Azizol Abdullah
    • 1
  • Shamala Subramaniam
    • 1
  1. 1.Communication Technology and Network Department, Faculty of Computer Science and Information TechnologyUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations