Skip to main content
Log in

Degradation kinetics and prediction of primary intermediates of cephalexin in aqueous media

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The presence of pharmaceuticals such as the antibiotic cephalexin in aqueous environments increases public health concerns due to their adverse biological effects and antibiotic resistance. It may be promising to remove these compounds from the aquatic environment through degradation reactions that convert them into non-toxic products. For this purpose, Density Functional Theory (DFT) molecular orbital calculations were performed to investigate the kinetics and mechanism of the degradation reaction of cephalexin with the hydroxyl (OH) radical. Reaction rate constants and branching ratios for 11 different reaction paths were calculated in the temperature range of 200 to 400 K. The total rate constant was calculated as 7.05 × 109 M−1 s−1 and is in good agreement with the experimental value. According to the kinetic and thermodynamic results, it can be concluded that the hydroxyl radical preferentially attacks the beta-lactam ring. The effect of water on the reaction mechanism was investigated in both implicit and explicit solvation models. Explicitly added water molecules affect the degradation reaction kinetic so that the results become compatible with the experimental ones. Ecotoxicity and bioaccumulation calculations on cephalexin and its degradation products show that some of its degradation products are harmful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Arsand JB, Hoff RB, Jank L et al (2018) Transformation products of amoxicillin and ampicillin after photolysis in aqueous matrices: identification and kinetics. Sci Total Environ 642:954–967. https://doi.org/10.1016/j.scitotenv.2018.06.122

    Article  CAS  PubMed  Google Scholar 

  2. Karlesa A, De Vera GAD, Dodd MC et al (2014) Ferrate(VI) oxidation of β-lactam antibiotics: reaction kinetics, antibacterial activity changes, and transformation products. Environ Sci Technol 48:10380–10389. https://doi.org/10.1021/es5028426

    Article  CAS  PubMed  Google Scholar 

  3. Szabó L, Tóth T, Rácz G et al (2016) OH and e-aq are yet good candidates for demolishing the β-lactam system of a penicillin eliminating the antimicrobial activity. Radiat Phys Chem 124:84–90. https://doi.org/10.1016/j.radphyschem.2015.10.012

    Article  CAS  Google Scholar 

  4. Serna-Galvis EA, Giraldo-Aguirre AL, Silva-Agredo J et al (2017) Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity. Environ Sci Pollut Res 24:6339–6352. https://doi.org/10.1007/s11356-016-6257-5

    Article  CAS  Google Scholar 

  5. He J, Zhang Y, Guo Y et al (2019) Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: kinetics, influencing factors, and mechanisms. Environ Int. https://doi.org/10.1016/j.envint.2019.105105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Giraldo-Aguirre AL, Serna-Galvis EA, Erazo-Erazo ED et al (2018) Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. Environ Sci Pollut Res 25:20293–20303. https://doi.org/10.1007/s11356-017-8420-z

    Article  CAS  Google Scholar 

  7. Qian Y, Liu X, Li K et al (2020) Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123332

    Article  PubMed  PubMed Central  Google Scholar 

  8. Serna-Galvis EA, Silva-Agredo J, Giraldo AL et al (2016) Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chem Eng J 284:953–962. https://doi.org/10.1016/j.cej.2015.08.154

    Article  CAS  Google Scholar 

  9. Ajoudanian N, Nezamzadeh-Ejhieh A (2015) Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater Sci Semicond Process 36:162–169. https://doi.org/10.1016/j.mssp.2015.03.042

    Article  CAS  Google Scholar 

  10. Masmoudi R, Khettaf S, Soltani A et al (2022) Cephalexin degradation initiated by OH radicals: theoretical prediction of the mechanisms and the toxicity of byproducts. J Mol Model. https://doi.org/10.1007/s00894-022-05121-y

    Article  PubMed  Google Scholar 

  11. Sun X, He W, Yang T et al (2021) Ternary TiO2/WO3/CQDs nanocomposites for enhanced photocatalytic mineralization of aqueous cephalexin: degradation mechanism and toxicity evaluation. Chem Eng J. https://doi.org/10.1016/j.cej.2021.128679

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ribeiro AR, Sures B, Schmidt TC (2018) Cephalosporin antibiotics in the aquatic environment: a critical review of occurrence, fate, ecotoxicity and removal technologies. Environ Pollut 241:1153–1166

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Lv G, Wang Y et al (2023) The oxidation mechanism and kinetics of limononic acid by hydroxyl radical in atmospheric aqueous phase. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2022.119527

    Article  Google Scholar 

  14. Song W, Chen W, Cooper WJ et al (2008) Free-radical destruction of β-lactam antibiotics in aqueous solution. J Phys Chem A 112:7411–7417. https://doi.org/10.1021/jp803229a

    Article  CAS  PubMed  Google Scholar 

  15. Li N, Tian Y, Zhao J et al (2018) Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light. Chem Eng J 352:412–422. https://doi.org/10.1016/j.cej.2018.07.038

    Article  CAS  Google Scholar 

  16. Antonin VS, Aquino JM, Silva BF et al (2019) Comparative study on the degradation of cephalexin by four electrochemical advanced oxidation processes: evolution of oxidation intermediates and antimicrobial activity. Chem Eng J 372:1104–1112. https://doi.org/10.1016/j.cej.2019.04.185

    Article  CAS  Google Scholar 

  17. Al-Musawi TJ, Kamani H, Bazrafshan E et al (2019) Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using Box-Behnken response surface methodology. Catal Letters 149:1186–1196. https://doi.org/10.1007/s10562-019-02713-x

    Article  CAS  Google Scholar 

  18. Bansal P, Verma A (2017) Synergistic effect of dual process (photocatalysis and photo-Fenton) for the degradation of cephalexin using TiO2 immobilized novel clay beads with waste fly ash/foundry sand. J Photochem Photobiol A Chem 342:131–142. https://doi.org/10.1016/j.jphotochem.2017.04.010

    Article  CAS  Google Scholar 

  19. Coledam DAC, Pupo MMS, Silva BF et al (2017) Electrochemical mineralization of cephalexin using a conductive diamond anode: a mechanistic and toxicity investigation. Chemosphere 168:638–647. https://doi.org/10.1016/j.chemosphere.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  20. Gashtasbi F, Yengejeh RJ, Babaei AA (2018) Photocatalysis assisted by activated-carbon-impregnated magnetite composite for removal of cephalexin from aqueous solution. Korean J Chem Eng 35:1726–1734. https://doi.org/10.1007/s11814-018-0061-5

    Article  CAS  Google Scholar 

  21. Darwish M, Mohammadi A, Assi N (2016) Integration of nickel doping with loading on graphene for enhanced adsorptive and catalytic properties of CdS nanoparticles towards visible light degradation of some antibiotics. J Hazard Mater 320:304–314. https://doi.org/10.1016/j.jhazmat.2016.08.043

    Article  CAS  PubMed  Google Scholar 

  22. Gao Y, Ji Y, Li G, An T (2014) Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic environments. Water Res 49:360–370. https://doi.org/10.1016/j.watres.2013.10.027

    Article  CAS  PubMed  Google Scholar 

  23. Ghasemi M, Khataee A, Gholami P et al (2020) In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J Environ Manag. https://doi.org/10.1016/j.jenvman.2020.110629

    Article  Google Scholar 

  24. Aydogdu S, Hatipoglu A (2023) Theoretical insights into the reaction mechanism and kinetics of ampicillin degradation with hydroxyl radical. J Mol Model. https://doi.org/10.1007/s00894-023-05462-2

    Article  PubMed  Google Scholar 

  25. Ngo TC, Taamalli S, Srour Z et al (2023) Theoretical insights into the oxidation of quinmerac herbicide initiated by HO• radical in aqueous media: mechanism, kinetics, and ecotoxicity. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2023.109941

    Article  Google Scholar 

  26. Aydogdu S, Hatipoglu A, Eren B, Gurkan YY (2021) Photodegradation kinetics of organophosphorous with hydroxyl radicals: experimental and theoretical study. J Serb Chem Soc 86:955–969. https://doi.org/10.2298/JSC210409056A

    Article  CAS  Google Scholar 

  27. Yang B, Liang A, Wang L (2023) The atmospheric oxidation mechanism of acetophenone initiated by the hydroxyl radicals. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2023.119905

    Article  Google Scholar 

  28. Yao J, Tang Y, Zhang Y, Ruan M, Wu W, Sun J (2022) New theoretical investigation of mechanism, kinetics, and toxicity in the degradation of dimetridazole and ornidazole by hydroxyl radicals in aqueous phase. J Hazard Mater 422:126930. https://doi.org/10.1016/j.jhazmat.2021.126930

    Article  CAS  PubMed  Google Scholar 

  29. Sun J, Chu R, Khan ZUH (2023) A theoretical study on the degradation mechanism, kinetics, and ecotoxicity of metronidazole (MNZ) in •OH- and SO4•−-assisted advanced oxidation processes. Toxics 11:796. https://doi.org/10.3390/toxics11090796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta Jr. JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT

  31. Dong S, Bi S (2019) The solvation effect on the rattling behaviour of the hydrated excess proton in water. Phys Chem Chem Phys 21:22385–22389. https://doi.org/10.1039/c9cp03827b

    Article  CAS  PubMed  Google Scholar 

  32. Aydogdu S, Hatipoglu A (2023) Aqueous degradation of 6-APA by hydroxyl radical: a theoretical study. J Mol Model. https://doi.org/10.1007/s00894-023-05636-y

    Article  PubMed  Google Scholar 

  33. Hosseini SJ (2023) Solvent effects on direct and indirect tautomerism of pyrimidin-2(1H)-one/pyrimidin-2-ol. J Phys Org Chem. https://doi.org/10.1002/poc.4473

    Article  Google Scholar 

  34. Foresman J, Frish E (1996) Exploring Chemistry with Electronic Structure Methods. Gaussian Inc, Pittsburg

    Google Scholar 

  35. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0. 9. Gaussian Inc, Wallingford

    Google Scholar 

  36. Levine IN (2009) Physical Chemistry, 6th edn. McGraw Hill-Higher Education, New York

    Google Scholar 

  37. El-hadj Saїd A, Mekelleche SM (2021) Antioxidant activity of Trolox derivatives toward methylperoxyl radicals: thermodynamic and kinetic theoretical study. Theor Chem Acc. https://doi.org/10.1007/s00214-021-02815-z

    Article  Google Scholar 

  38. Collins FC, Kimball GE (1949) Diffusion-controlled reaction rates. J Colloid Sci 4:425–454

  39. ECOSAR (2023) Ecological Structure Activity Relationships (ECOSAR) Predictive Model. https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model

  40. T.E.S.T (2020) Toxicity estimation software tool, Washington DC. https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test

  41. EPISuite™ (2023) Estimation program interface, Washington DC. https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface

  42. Serna-Galvis EA, Ferraro F, Silva-Agredo J, Torres-Palma RA (2017) Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Res 122:128–138. https://doi.org/10.1016/j.watres.2017.05.065

    Article  CAS  PubMed  Google Scholar 

  43. Li H, Zhang Y, Wan J et al (2018) Theoretical investigation on the oxidation mechanism of dibutyl phthalate by hydroxyl and sulfate radicals in the gas and aqueous phase. Chem Eng J 339:381–392. https://doi.org/10.1016/j.cej.2017.12.153

    Article  CAS  Google Scholar 

  44. Li S, Huang T, Du P et al (2020) Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: experimental and theoretical evidences. Water Res. https://doi.org/10.1016/j.watres.2020.116286

    Article  PubMed  PubMed Central  Google Scholar 

  45. Uc VH, Alvarez-Idaboy JR, Galano A et al (2006) Theoretical determination of the rate constant for OH hydrogen abstraction from toluene. J Phys Chem A 110:10155–10162. https://doi.org/10.1021/jp062775l

    Article  CAS  PubMed  Google Scholar 

  46. Dao DQ, Taamalli S, Louis F et al (2023) Hydroxyl radical-initiated decomposition of metazachlor herbicide in the gaseous and aqueous phases: mechanism, kinetics, and toxicity evaluation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.137234

    Article  PubMed  Google Scholar 

  47. Vione D, De Laurentiis E, Berto S et al (2016) Modeling the photochemical transformation of nitrobenzene under conditions relevant to sunlit surface waters: reaction pathways and formation of intermediates. Chemosphere 145:277–283. https://doi.org/10.1016/j.chemosphere.2015.11.039

    Article  CAS  PubMed  Google Scholar 

  48. Eberhardt MK, Yoshida M (1973) Radiation-induced homolytic aromatic substitution. I. Hydroxylation of nitrobenzene, chlorobenzene, and toluene. J Phys Chem 77:589–597. https://doi.org/10.1021/j100624a005

    Article  CAS  Google Scholar 

  49. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices - a review. J Environ Manag 92:2304–2347

    Article  CAS  Google Scholar 

  50. Serna-Galvis EA, Montoya-Rodríguez D, Isaza-Pineda L et al (2019) Sonochemical degradation of antibiotics from representative classes-considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrason Sonochem 50:157–165. https://doi.org/10.1016/j.ultsonch.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  51. Wang XH, Lin AYC (2012) Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environ Sci Technol 46:12417–12426. https://doi.org/10.1021/es301929e

    Article  CAS  PubMed  Google Scholar 

  52. Dodd MC, Buffle MO, Von Gunten U (2006) Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environ Sci Technol 40:1969–1977. https://doi.org/10.1021/es051369x

    Article  CAS  PubMed  Google Scholar 

  53. Wojnárovits L, Tóth T, Takács E (2018) Critical evaluation of rate coefficients for hydroxyl radical reactions with antibiotics: a review. Crit Rev Environ Sci Technol 48:575–613. https://doi.org/10.1080/10643389.2018.1463066

    Article  CAS  Google Scholar 

  54. Klasmeier J, Matthies M, Macleod M et al (2006) Application of multimedia models for screening assessment of long-range transport potential and overall persistence. Environ Sci Technol 40:53–60. https://doi.org/10.1021/es0512024

    Article  CAS  PubMed  Google Scholar 

  55. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Phys Chem A 102:1995–2001

  56. Klamt A, Moya C, Palomar J (2015) A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach. J Chem Theory Comput 11:4220–4225. https://doi.org/10.1021/acs.jctc.5b00601

    Article  CAS  PubMed  Google Scholar 

  57. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  58. Gonzalez MG, Oliveros E, Wörner M, Braun AM (2004) Vacuum-ultraviolet photolysis of aqueous reaction systems. J Photochem Photobiol, C 5:225–246

    Article  CAS  Google Scholar 

  59. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

  60. Boyd AA, Flaud PM, Daugey N, Lesclaux R (2003) Rate constants for RO2 + HO2 reactions measured under a large excess of HO2. J Phys Chem A 107:818–821. https://doi.org/10.1021/jp026581r

    Article  CAS  Google Scholar 

  61. Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338. https://doi.org/10.1021/ja01607a027

    Article  CAS  Google Scholar 

  62. Zhang Y, Wei B, Tang R (2023) Theoretical study on the mechanisms, kinetics, and toxicity evaluation of OH-initiated atmospheric oxidation reactions of coniferyl alcohol. Atmosphere (Basel). https://doi.org/10.3390/atmos14060976

    Article  PubMed Central  Google Scholar 

  63. Conder JM, Hoke RA, De Wolf W et al (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42:995–1003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by Yildiz Technical University Research Coordination with Project number FDK-2021–4138. We also acknowledge that computational resources are provided by TÜBİTAK ULAKBİM, High Performance and Grid Computing Center (TRUBA).

Author information

Authors and Affiliations

Authors

Contributions

Arzu Hatipoglu: conceptualization and writing—reviewing and editing. Seyda Aydogdu: DFT calculations and writing.

Corresponding author

Correspondence to Arzu Hatipoglu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1270 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydogdu, S., Hatipoglu, A. Degradation kinetics and prediction of primary intermediates of cephalexin in aqueous media. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02311-7

Keywords

Navigation