Skip to main content
Log in

Effects of atomic electronegativity of halogen on excited state reactional behaviors for 4-chloro-2-[1-(4-methoxy-phenyl)-4,5-diphenyl-1H-imidazol-2-yl]-phenol compound: a theoretical study

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Inspired by the brilliant photochemical and photophysical properties of organic molecule containing the halide substitution that could be potentially applied across various disciplines, in this work, effects of atomic electronegativity of halogen (F, Cl, and Br) on excited state hydrogen bond effects and excited state intramolecular proton transfer (ESIPT) reaction. We present the characteristic 4-chloro-2-[1-(4-methoxy-phenyl)-4,5-diphenyl-1H-imidazol-2-yl]-phenol (CMDIP) that is the main objective of this study to explore in detail the influence of the change of atomic electronegativity by photoexcitation. By comparing the structural changes and infrared (IR) vibrational spectra of the CMDIP derivatives (CMDIP-F, CMDIP-Cl, and CMDIP-Br) fluorophores in S0 and S1 states, combined with the preliminary detection of hydrogen bond interaction by core-valence bifurcation (CVB) index, we can conclude that the hydrogen bond could be strengthened in S1 state, which is favorable for the occurrence of ESIPT reactions. The charge recombination behavior of hydrogen bond induced by photoexcitation also further illustrates this point. Via constructing potential energy curves (PESs) based on restrictive optimization and searching transition state (TS) form, we confirm the change of atomic electronegativity has a regulatory effect on the ESIPT behavior for CMDIP derivatives, that is, the higher the atomic electronegativity is more conducive to the ESIPT reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available on request from the corresponding author.

References

  1. Liu J, Hamza A, Zhan C (2009) J Am Chem Soc 131:11964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li C, Li D, Ma C, Liu Y (2016) J Mol Liq 224:83

    Article  CAS  Google Scholar 

  3. Zhao J, Chen J, Song P, Liu J, Ma F (2015) J Clust Sci 26:1463

    Article  CAS  Google Scholar 

  4. Liu Y, Lan S, Li C (2013) Spectrochimica Acta Part A 112:257

    Article  CAS  Google Scholar 

  5. Zhao G, Han K (2012) Acc Chem Res 45:404

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Ding J, Shi D, Sun J (2008) J Phys Chem A 112:6244

    Article  CAS  PubMed  Google Scholar 

  7. Zhao G, Han K (2010) J Comput Chem 2008:29

    Google Scholar 

  8. Liu Y, Ding J, Liu R, Shi D, Sun J (2009) J Comput Chem 30:2723

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Yang Y, Jiang K, Shi D, Sun J (2011) Phys Chem Chem Phys 13:15299

    Article  CAS  PubMed  Google Scholar 

  10. Zhao G, Northrop B, Stang P, Han K (2010) J Phys Chem A 114:3418

    Article  CAS  PubMed  Google Scholar 

  11. Yang W, Yan C, Wang X, Liao L (1843) Sci China Chem 2022:65

    Google Scholar 

  12. Omidyan R, Iravani M (2016) J Chem Phys 145:184303

    Article  PubMed  Google Scholar 

  13. Liu X, Zhang H, Liu S, Wang Y, Zhang P (2022) Struct Chem 33:1355

    Article  CAS  Google Scholar 

  14. Pina J, Sarmento D, Accoto M, Gentili PL, Vaccaro L, Galvao A, Seixas de Melo JS (2017) J Phys Chem B 121:2308

    Article  CAS  PubMed  Google Scholar 

  15. Moghadam AJ, Omidyan R, Mirkhani V, Azimi G (2013) J Phys Chem A 117:718

    Article  PubMed  Google Scholar 

  16. Song L, Meng X, Zhao J, Han H, Zheng D (2022) Spectrochimica Acta Part A 264:120296

    Article  CAS  Google Scholar 

  17. Yang D, Yang G, Zhao J, Zheng R, Wang Y (2017) RSC Adv 7:1299

    Article  CAS  Google Scholar 

  18. Wan Y, Li Q, Zhu L, Wan Y, Yan L, Guo M, Yin H, Shi Y (2023) Spectrochimica Acta Part A 301:122945

    Article  CAS  Google Scholar 

  19. Yang D, Zhao J, Zheng R, Wang Y, Lv J (2015) Spectrochimica Acta Part A 151:368

    Article  CAS  Google Scholar 

  20. Zhao J, Liu C (2023) Molecules 28:5951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marazzi M, Sancho U, Castano O, Domcke W, Frutos LM (2010) J Phys Chem Lett 1:425

    Article  CAS  Google Scholar 

  22. Zhang Q, Yang G, Song X, Zhao J, Yang D (2018) J At Mol Sci 9:7

    Google Scholar 

  23. Liu X, Liu J, Jiang J, Wang Y (2023) Comput. Theor Chem 1220:113978

    Article  CAS  Google Scholar 

  24. Omidyan R, Iravani A (2016) J Phys Chem A 120:1012

    Article  CAS  PubMed  Google Scholar 

  25. Yang D, Zhao J, Jia M, Song X (2017) RSC Adv 7:34034

    Article  CAS  Google Scholar 

  26. Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T (2016) Adv Mater 28:2777

    Article  CAS  PubMed  Google Scholar 

  27. Matsui K, Oda S, Yoshiura K, Nakajima K, Yasuda N, Hatakeyama T (2018) J Am Chem Soc 140:1195

    Article  CAS  PubMed  Google Scholar 

  28. Jiang P, Zhan L, Cao X, Lv X, Gong S, Chen Z, Zhou C, Huang Z, Ni F, Zou Y, Yang C (2021) Adv Opt Mater 9:2100825

    Article  CAS  Google Scholar 

  29. Ahmad M, Siddique A, Khalid M, Ali A, Shaheen M, Tahir M, Imran M, Irfan A, Khan M, Paixao M (2023) RSC Adv 13:9222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko B, Gomperts R, Mennucci B, Hratchian H, Ortiz J, Izmaylov A, Sonnenberg J, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Millam J, Klene M, Adamo C, Cammi R, Ochterski J, Martin R, Morokuma K, Farkas O, Foresman J, Fox D (2016) Gaussian 16, Revision A. 03; Gaussian, Inc., Wallingford CT

  31. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  33. Becke A (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  34. Feller D (1996) J Comput Chem 17:1571

    Article  CAS  Google Scholar 

  35. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  36. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  PubMed  Google Scholar 

  37. Cammi R, Tomasi J (1995) J Comput Chem 16:1449

    Article  CAS  Google Scholar 

  38. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

  39. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  40. Johnson E, Keinan S, Mori-Sanchez P, Contreras-Carcia J, Cohen A, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li C, Yang Y, Ma C, Liu Y (2016) RSC Adv 6:5134

    Article  CAS  Google Scholar 

  42. Guo Q, Ji D, Zhao J (2021) Chem Phys Lett 767:138377

    Article  CAS  Google Scholar 

  43. Dong H, Jiang W, Lv G, Han Y (2023) J Chin Chem Soc 70:8

    Article  CAS  Google Scholar 

  44. Xiao S, Lou Z, Ji D, Zhao J (2021) Chem Phys Lett 769:138409

    Article  CAS  Google Scholar 

  45. Yuan H, Zhang P, Zhan H, Zhang H, Sun X, Wang Y, Zhang H (2023) Chem Phys Lett 812:140256

    Article  CAS  Google Scholar 

  46. Zhao J, Jin B, Tang Z (2022) Phys Chem Chem Phys 24:27660

    Article  CAS  PubMed  Google Scholar 

  47. Zhao G, Shi W, Xin X, Ma F, Li Y (2022) J Mol Liq 354:118807

    Article  CAS  Google Scholar 

  48. Zhao J, Song P, Feng L, Wang X, Tang Z (2023) J Mol Liq 380:121763

    Article  CAS  Google Scholar 

  49. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  PubMed  Google Scholar 

  50. Zhao J, Li Z, Jin B (2021) J Lumin 238:118231

    Article  CAS  Google Scholar 

  51. Yang D, Zhao J, Yang G, Song N, Zheng R, Wang Y (2017) J Mol Liq 241:1003

    Article  CAS  Google Scholar 

  52. Sobolewski A, Domcke W (1999) Phys Chem Chem Phys 1:3065

    Article  CAS  Google Scholar 

  53. Lynch B, Fast P, Harris M, Truhlar D (2000) J Phys Chem A 104:4811

    Article  CAS  Google Scholar 

  54. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  55. Schlegel H (1994) J Chem Phys Faraday Trans 90:1569

    Article  CAS  Google Scholar 

  56. Hratchian H, Frisch M, Schlegel H (2010) J Chem Phys 133:224101

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation (No. 11904082), the Fundamental Research Funds for the Central Universities (No. 2022MS120), and the Shenyang Normal University doctoral program (Grant No. BS202214).

Author information

Authors and Affiliations

Authors

Contributions

CL: conceptualization, methodology, data analysis, writing—review and editing, validation and supervision. MH: methodology, writing—review and editing. LF: quantum chemical simulations, methodology, writing—review and editing. HD: quantum chemical simulations, methodology, data analysis, and writing—review and editing.

Corresponding author

Correspondence to Hao Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 745 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hou, M., Fan, L. et al. Effects of atomic electronegativity of halogen on excited state reactional behaviors for 4-chloro-2-[1-(4-methoxy-phenyl)-4,5-diphenyl-1H-imidazol-2-yl]-phenol compound: a theoretical study. Struct Chem (2024). https://doi.org/10.1007/s11224-023-02273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-023-02273-2

Keywords

Navigation