Skip to main content
Log in

Structure, vibrational characterization and DFT calculations of 1-(diaminomethylene)thiouron-1-ium 2,3-pyridinedicarboxylate

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The single crystals of the title compound (1) were grown from a water solution. The compound crystallizes in the centrosymmetric space group P21/c of the monoclinic system with eight molecules per unit cell. Multiple recrystallizations of the crystals from heavy water gives deuterated analogue 1d. The asymmetric unit of 1 contains two salt molecules. Both independent cations interact with anions via N−HO hydrogen bonds with R22(8) and R21(6) graphs forming 1:1 salt molecules. Both salt molecules are linked by additional N−HO and O−HO hydrogen bonds with a graph R22(9). The oppositely charged components of the crystals, i.e., 1-(diaminomethylene)thiouron-1-ium cations and 2,3-pyridine-dicarboxylate anions, interact each other forming three-dimensional supramolecular hydrogen bonded network. The interactions between the components as well as between the 1:1 salt molecules were analysed using the Hirshfeld surface. The compound was also characterized by vibrational spectroscopy. The vibrational bands were interpreted based on the optimized structure and force field calculations of normal coordinates based on the density functional theory (DFT) with the base set 6-31G(d,p). Isotopic frequency shift and potential energy distribution (PED) were used to assign the bands. The electronic absorption spectra of 1 in the gas phase, as well as in polar and non-polar solvents, were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

By the author on request.

References

  1. Bolla G, Sarma B, Nangia AK (2022) Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chem Rev 122:11514–11603. https://doi.org/10.1021/acs.chemrev.1c00987

    Article  CAS  PubMed  Google Scholar 

  2. Chand A, Sahoo DK, Rana A, Jena S, Biswal HS (2020) The prodigious hydrogen bonds with sulfur and selenium in molecular assemblies, structural biology, and functional materials. Acc Chem Res 53(8):1580–1592. https://doi.org/10.1021/acs.accounts.0c00289

    Article  CAS  PubMed  Google Scholar 

  3. Cao HL, Zhou JR, Cai FY, Lü J, Cao R (2019) Two-component pharmaceutical cocrystals regulated by supramolecular synthons comprising primary N···H···O interactions. Cryst Growth Des 19:3–16. https://doi.org/10.1021/acs.cgd.8b01663

    Article  CAS  Google Scholar 

  4. Desiraju GR (2013) Crystal engineering: from molecule to crystal. J Am Chem Soc 135:9952–9967. https://doi.org/10.1021/ja403264c

    Article  CAS  PubMed  Google Scholar 

  5. Trask AV, Motherwell WDS, Jones W (2005) Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des 5(3):1013–1021. https://doi.org/10.1021/cg0496540

    Article  CAS  Google Scholar 

  6. Shao D, Shi L, Liu G, Yue J, Ming S, Yang X, Zhu J, Ruan Z (2023) Metalo hydrogen-bonded organic frameworks self-assembled by charge-assisted synthons for ultrahigh proton conduction. Cryst Growth Des 23(7):5035–5042. https://doi.org/10.1021/acs.cgd.3c00263

    Article  CAS  Google Scholar 

  7. Thomas LH, Jones AOF, Kallay AA, Mclntyre GJ, Wilson CC (2016) Engineering short, strong, charge-assisted hydrogen bonds in benzoic acid dimers through cocrystallization with proton sponge. Cryst Growth Des 16(4):2112–2122. https://doi.org/10.1021/acs.cgd.5b01787

    Article  CAS  Google Scholar 

  8. Bis JA, Zaworotko MJ (2005) The 2-aminopyridinium-carboxylate supramolecular heterosynthon: a robust motif for generation of multiple-component crystals. Cryst Growth Des 5(3):1169–1179. https://doi.org/10.1021/cg049622c

    Article  CAS  Google Scholar 

  9. Voronin AP, Surov AO, Churakov AV, Vener MV (2023) Supramolecular organization in salts of riluzole with dihydroxybenzoic acids—the key role of the mutual arrangement of OH groups. Pharmaceutics 15:878. https://doi.org/10.3390/pharmaceutics15030878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ebenezer S, Muthiah PT (2012) Design of co-crystals/salts of aminopyrimidines and carboxylic acids through recurrently occurring synthons. Cryst Growth Des 12:3766–3785. https://doi.org/10.1021/cg3005954

    Article  CAS  Google Scholar 

  11. Mirzaei M, Sadeghi F, Molčanov K, Zaręba JK, Gomila RM, Frontera A (2020) Recurrent supramolecular motifs in a series of acid–base adducts based on pyridine-2,5-dicarboxylic acid N-oxide and organic bases: inter- and intramolecular hydrogen bonding. Cryst Growth Des 20(2020):1738–1751. https://doi.org/10.1021/acs.cgd.9b01475

    Article  CAS  Google Scholar 

  12. Capeletti da Silva C, Cirueir ML, Martins FT (2013) Lamivudine salts with 1,2-dicarboxylic acids: a new and a rare synthon with double pairing motif fine-tuning their solubility. CrystEngComm 15:6311–6317. https://doi.org/10.1039/C3CE40844B

    Article  Google Scholar 

  13. Garg U, Azim Y, Kar A, Pradeep CP (2020) Cocrystals/salt of 1-naphthaleneacetic acid and utilizing Hirshfeld surface calculations for acid–aminopyrimidine synthons. CrystEngComm 22:2978–2989. https://doi.org/10.1039/D0CE00106F

    Article  Google Scholar 

  14. Babashkina MG, Safin DA, Bolte M, Garcia Y (2012) N-(diisopropylthiophosphoryl)-N′-(R)-thioureas: synthesis, characterization, crystal structures and competitive bulk liquid membrane transport of some metal ions. Dalton Trans 41:3223–3232. https://doi.org/10.1039/c2dt11862a

    Article  CAS  PubMed  Google Scholar 

  15. Marqués-Lopez E, Alcaine A, Tejero T, Herrera RP (2011) Enhanced efficiency of thiourea catalysts by external Brønsted acids in the Friedel–Crafts alkylation of indoles. Eur J Org Chem 3700–3705. https://doi.org/10.1002/ejoc.201100506

  16. Bühlmann P, Pretsch E, Bakker E (1998) Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem Rev 98:1593–1687. https://doi.org/10.1021/cr970113+

    Article  PubMed  Google Scholar 

  17. Ghosh A, Jose DA, Das A, Ganguly B (2010) A density functional study towards substituent effects on anion sensing with urea receptors. J Mol Model 16:1441–1448. https://doi.org/10.1007/s00894-010-0663-2

    Article  CAS  PubMed  Google Scholar 

  18. Xiong XS, Liu H, Fu LL, Li L, Li J, Luo XM, Mei CL (2008) Antitumor activity of a new n-substituted thiourea derivative, an EGFR signaling-targeted inhibitor against a panel of human lung cancer cell lines. Chemotherapy 54:463–474. https://doi.org/10.1159/000159272

  19. Huhtiniemi T, Suuronen T, Rinne VM, Wittekindt C, Kakkonen ML, Jarho E, Wallen EAA, Salminen A, Poso A, Leppanen J (2008) Oxadiazole-carbonylaminothioureas as SIRT1 and SIRT2 inhibitors. J Med Chem 51(15):4377–4380. https://doi.org/10.1021/jm800639h

    Article  CAS  PubMed  Google Scholar 

  20. Mistry BM, Shin HS, Pandurangan M, Patel RV (2017) Synthesis of acyl thiourea derivatives of 7-trifluoromethyl-2-pyridylquinazolin-4(3H)-one as anticancer agents. J Chem Res 41:598–602. https://doi.org/10.3184/174751917X15064232103074

    Article  CAS  Google Scholar 

  21. Bhagat S, Arfeen M, Adane L, Singh S, Singh PP, Charkraborti AK, Bharatam PV (2017) Guanylthiourea derivatives as potential antimalarial agents: synthesis, in vivo and molecular modelling studies. Eur J Med Chem 135:339–348. https://doi.org/10.1016/j.ejmech.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  22. Mertschenk B, Knott A, Bauer W (2002) Thiourea and thiourea derivatives. In Ullmann’s encyclopedia of industrial chemistry. Wiley‐VCH Verlag GmbH & Co

  23. Chakrabarty K, Kar T, Gupta SPS (1990) Structure of bis(amidinothiourea)palladium chloride. Acta Cryst C46:2065–2668. https://doi.org/10.1107/S0108270190002050

    Article  CAS  Google Scholar 

  24. Kabir MK, Yamada K, Adachi K, Kondo M, Kawata S (2002) cis-Bis(amidinothioureato-κ2N,N')nickel(II). Acta Cryst. E58: m580-m582. https://doi.org/10.1107/S1600536802017038

  25. Doxiadi E, Vilar R, White AJP, Williams DJ (2003) Anion-templated synthesis and structural characterisation of Ni/Pd-containing metallamacrocycles. Polyhedron 22:2991–2998. https://doi.org/10.1016/S0277-5387(03)00435-2

    Article  CAS  Google Scholar 

  26. Hołyńska M, Korabik M, Kubiak M (2010) Pursuing new facts in the coordination capabilities of (1-diamino-methylene)thiourea (HATU): products of the interaction with transition metal halides – structural investigations. Polyhedron 29:530–538. https://doi.org/10.1016/j.poly.2009.06.045

    Article  CAS  Google Scholar 

  27. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database Acta Cryst B72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  28. Janczak J (2023) Supramolecular architecture and SHG activity of organic crystals formed between the amidinothiourea and nicotinic acid. J Mol Struct 1273:134385. https://doi.org/10.1016/j.molstruc.2022.134385

    Article  CAS  Google Scholar 

  29. Rauhut G, Pulay P (1995) Transferable scaling factors for density functional derived vibrational force fields. J Phys Chem 99:3093–3100. https://doi.org/10.1021/j100010a019

    Article  CAS  Google Scholar 

  30. Katsyuba SA, Zvereva EE, Burganov TI (2013) Is there a simple way to reliable simulations of infrared spectra of organic compounds? J Phys Chem A 117(30):6664–6670. https://doi.org/10.1021/jp404574m

    Article  CAS  PubMed  Google Scholar 

  31. Janczak J, Perpéuto GJ (2008) 1-(Diaminomethylene)thiourea: a tautomer of 2-imino-4-thiobiuret. Acta Cryst C64:o114–o116. https://doi.org/10.1107/S0108270108001868

    Article  CAS  Google Scholar 

  32. Rigaku Oxford Diffraction (2020) CrysAlisPro Software system, Oxford, UK, 2018

  33. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2015) SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  35. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr. Sect C Cryst Struct Commun 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  36. Putz H, Brandenburg K (2014) DIAMOND Version 3.0, Crystal Impact GbR, Bonn, Germany

  37. Wolff SK, Grimwood DJ, MacKimon JJ, Turner MJ, Jayatilaka D, Spackman AM (2013) Crystal Explorer ver. 3.1, University of Western Australia, Perth, Australia

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian, Inc., Wallingford CT, 2013. Gaussian16, Revision B.01, Gaussian, Inc., Wallingford, CT

  39. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046. https://doi.org/10.1063/1.470829

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  41. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  42. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  43. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

  44. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222. https://doi.org/10.1007/bf00533485

    Article  CAS  Google Scholar 

  45. Hariharan PC, Pople JA (1974) Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27:209–214. https://doi.org/10.1080/00268977400100171

    Article  CAS  Google Scholar 

  46. Jamróz MH, Dobrowolski JC, Brzozowski R (2006) Vibrational modes of 2,6-, 2,7-, and 2,3-diisopropyl-naphthalene. A DFT study J Mol Struct 787:172–183. https://doi.org/10.1016/j.molstruc.2005.10.044

    Article  CAS  Google Scholar 

  47. Jamróz MK, Jamróz MH, Dobrowolski JC, Gliński JA, Davey MH, Wawer I (2011) Novel and unusual triterpene from Black Cohosh. Determination of structure of 9,10-seco-9,19-cyclolanostane xyloside (cimipodocarpaside) by NMR, IR and Raman spectroscopy and DFT calculations. Spectrochim Acta Part A Mol Biomol Spectrosc 78:107–112. https://doi.org/10.1016/j.saa.2010.09.005

    Article  CAS  Google Scholar 

  48. Jamróz MH (2013) Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim Acta Part A Mol Biomol Spectrosc 114:220–230. https://doi.org/10.1016/j.saa.2013.05.096

    Article  CAS  Google Scholar 

  49. Pulay P, Fogarasi G, Ponger G, Boggs JE, Vargha A (1983) Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. scaled quantum mechanical (SQM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J Am Chem Soc 105:7037–7047. https://doi.org/10.1021/ja00362a005

    Article  CAS  Google Scholar 

  50. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513. https://doi.org/10.1021/jp960976r

    Article  CAS  Google Scholar 

  51. Martinez CR, Iverson BL (2012) Rethinking the term “pi-stacking.” Chem Sci 3:2191–2201. https://doi.org/10.1039/C2SC20045G

    Article  CAS  Google Scholar 

  52. Zhuang WR, Wang Y, Cui PF, Xing L, Lee J, Kim D, Jiang HL, Oh YK (2019) Applications of π-π stacking interactions in the design of drug-delivery systems. J Control Release 294:311–326. https://doi.org/10.1016/j.jconrel.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  53. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  54. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst B60:627–668. https://doi.org/10.1107/S0108768104020300

    Article  CAS  Google Scholar 

  55. McKinnon JJ, Jayatilaka D, Spackman MM (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816. https://doi.org/10.1039/B704980C

    Article  Google Scholar 

  56. Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer model energies and energy frame-works: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 4:575–587. https://doi.org/10.1107/S205225251700848X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sjoberg P, Politzer P (1990) Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes. J Phys Chem 94:3959–3961. https://doi.org/10.1021/j100373a017

    Article  CAS  Google Scholar 

  58. Politzer P, Murray JS (2004) In Comput. Med. Chem. Drug Discovery. P. Bultinck, P. H. De Winter, W. Langenaeker, J. P. Tollenaere, (Eds.) New York: Marcel Dekker Inc. (pp. 213–234)

  59. Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int Ed 43:5310–5324. https://doi.org/10.1002/anie.200301739

    Article  CAS  Google Scholar 

  60. Grimmel SA, Reiher M (2019) The electrostatic potential as a descriptor for the protonation propensity in automated exploration of reaction mechanisms. Faraday Discuss 220:443–463. https://doi.org/10.1039/C9FD00061E

    Article  CAS  PubMed  Google Scholar 

  61. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  62. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perespect 61:191–202. https://doi.org/10.1289/ehp.8561191

    Article  CAS  Google Scholar 

  63. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163. https://doi.org/10.1002/wcms.19

    Article  CAS  Google Scholar 

  64. Koopmans T (1933) Ordering of wave functions and eigen energies to the individual electrons of an atom. Physica 1:104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

  65. Vargas R, Garza J, Cedillo A (2005) Koopmans-like approximation in the Kohn-Sham method and the impact of the frozen core approximation on the computation of the reactivity parameters of the density functional theory. J Phys Chem A 109:8880–8892. https://doi.org/10.1021/jp052111w

    Article  CAS  PubMed  Google Scholar 

  66. Islam N, Ghosh DC (2012) On the electrophilic character of molecules through its relation with electronegativity and chemical hardness. Int J Mol Sci 13:2160–2175. https://doi.org/10.3390/ijms13022160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahmed A, Fatima A, Shakya S, Rahman QI, Ahmad M, Javed S, Al Salem HS, Ahmad A (2022) Crystal structure, topology, DFT and Hirshfeld surface analysis of a novel charge transfer complex (L3) of anthraquinone and 4-{[(anthracen-9-yl)meth-yl] amino}-benzoic acid (L2) exhibiting photocatalytic properties: an experimental and theoretical approach. Molecules 27:1724–1744. https://doi.org/10.3390/molecules27051724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Socrates G (1980) Infrared characteristic group frequencies. Wiley-Interscience, Chichester, U.K

    Google Scholar 

  69. Socrates G (2004) Infrared and Raman characteristic group frequencies tables and charts, 3rd edn. Wiley, Chinchester, West Sussex, England

    Google Scholar 

  70. Krishnan RS, Krishnan K (1964) Influence of the hydrogen bond on the N-H stretching frequencies in amino-acids. Proc Indian Acad Sci 60:11–19. https://doi.org/10.1007/BF03046363

    Article  CAS  Google Scholar 

  71. Novak A, Lautie A (1967) Structure of the NH stretching band and (NH). N hydrogen bond frequencies in purine. Nature 216:1202–1203. https://doi.org/10.1038/2161202a0

    Article  CAS  Google Scholar 

  72. Novak A (1974) Hydrogen bonding in solids correlation of spectroscopic and crystallographic data. Struct Bond 18:177–218. https://doi.org/10.1007/BFb0116438

    Article  CAS  Google Scholar 

  73. Mikenda W (1986) Stretching frequency versus bond distance correlation of O-D(H)⋯Y (Y = N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates. J Mol Struct 147:1–15. https://doi.org/10.1016/0022-2860(86)87054-5

    Article  CAS  Google Scholar 

  74. Denisov GS, Kuzina LA, Shchepkin DN (1992) Stretching vibrations of amino group and inter/intramolecular hydrogen bond in anilines. Croat Chem Acta 65:89–100. https://hrcak.srce.hr/137259

  75. Slipchenko MN, Sartakov BG, Vilesov AF, Xantheas SS (2007) Study of NH stretching vibrations in small ammonia clusters by infrared spectroscopy in He droplets and ab initio calculations. J Phys Chem A 111:7460–7471. https://doi.org/10.1021/jp071279+

  76. Malm C, Prädel LA, Marekha BA, Grechko M, Hunger J (2020) Composition-dependent hydrogen-bonding motifs and dynamics in Brønsted acid–base mixtures. J Phys Chem B 124:7229–7238. https://doi.org/10.1021/acs.jpcb.0c04714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Singh P, Hasmuddin M, Adbullah MM, Shkir M, Wahab MA (2013) Observation of crystallization and characterizations on thiourea cadmium iodide: a semi-organic optical material. Mater Res Bull 48:3926–3933. https://doi.org/10.1016/j.materresbull.2013.06.005

  78. Shivachev BL, Kosser K, Dimowa LT, Yankov G, Petrov T, Nikolova RP, Petrova N (2013) Synthesis, growth, structural, thermal, optical properties of new metal-organic crystals: methyltriphenylphosphonium iodide thiourea and methyltriphenylphosphonium iodide chloroform hemisolvate. J Cryst Growth 376:41–46. https://doi.org/10.1016/j.jcrysgro.2013.04.040

    Article  CAS  Google Scholar 

  79. Bombicz P, Mutikainen I, Krunks M, Leskelä T, Madarasz J, Niinistö L (2004) Synthesis, vibrational spectra and X-ray structures of copper(I) thiourea complexes. Inorg Chim Acta 357:513–525. https://doi.org/10.1016/j.ica.2003.08.019

    Article  CAS  Google Scholar 

  80. Allen FH, Bird CH, Rowland RS, Raithby PR (1997) Resonance-induced hydrogen bonding at sulfur acceptors in R1R2C=S and R1CS2 systems. Acta Cryst B 53:680–695. https://doi.org/10.1107/S0108768197002656

    Article  Google Scholar 

Download references

Acknowledgements

Calculations have been carried out in Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl).

Author information

Authors and Affiliations

Authors

Contributions

J.J.: conception, investigation, writing the article, correction of the final version.

Corresponding author

Correspondence to Jan Janczak.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11224_2023_2262_MOESM1_ESM.docx

Supplementary file1 Additional material comprising experimental and simulated XRD diagrams confirming the purity of the compounds, the DFT optimized parameters, hydrogen-bond geometry, the TD DFT results of 1 in the gas-phase and in solvents, DFT calculated IR and Raman spectra of 1 and its deuterated analogue 1d, the definitions of the local modes calculated for the protiated and deuterated samples and the numbering scheme used in the calculation by VEDA program, detailed band assignments along with PED analysis and the full details of the X-ray data collection and final refinement parameters including anisotropic thermal parameters and full list of the bond lengths and angles have been deposited with the Cambridge Crystallographic Data Center in the CIF format as supplementary publications no. CCDC 2280816. Copies of the data can be obtained free of charge on the application to CCDC, 12 Union Road, Cambridge, CB21EZ, UK, (fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk). (DOCX 4602 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janczak, J. Structure, vibrational characterization and DFT calculations of 1-(diaminomethylene)thiouron-1-ium 2,3-pyridinedicarboxylate. Struct Chem (2023). https://doi.org/10.1007/s11224-023-02262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-023-02262-5

Keywords

Navigation