Skip to main content
Log in

Thermodynamic transformations of entangled bulky organic monomers with long alkyl chains

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A bulky organic monomer with a long alkyl chain, as, e.g., hexadecyltrimethylammonium (HDTMA+), is the structural unit prerequisite for ionic-liquid engineering as well as porous materials design; however, the detailed structure in the entangled agglomerate, particularly caused by moderate temperatures, has not yet been well studied. Here, the local molecular structures in the entangled HDTMA+ monomers stirred at different temperatures were studied by open space analysis using positronium coupled with molecular dynamics simulations. The agglomerate stirred at 323 K exhibits the small and large open spaces with the size distributions centered at ~ 0.27 nm and ~ 0.55 nm, respectively. Both open spaces are found to be dominantly surrounded by protons. Upon increasing temperature to 423 K, the enlargements of the small and large open spaces occur broadening their size distributions, whereas the proton-rich chemical environment is maintained. The enhanced porousness at high temperatures is explained by the efficiently shrunk monomers triggered off by the lowering of HDTMA+ diffusivity upon coexisting with propanol molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. He X, Kong M, Niu Y, Li G (2020) Entanglement and relaxation of poly(methyl methacrylate) chains in imidazolium-based ionic liquids with different cationic structures. Macromolecules 53:7865–7875

    Article  CAS  Google Scholar 

  2. Nagarajan K, Gopan G, Cheriya RT, Hariharan M (2017) Long alkyl side-chains impede exciton interaction in organic light harvesting crystals. Chem Commun 53:7409–7411

    Article  CAS  Google Scholar 

  3. Gao Y, Duan L, Guan S, Gao G, Cheng Y, Ren X, Wang Y (2017) The effect of hydrophobic alkyl chain length on the mechanical properties of latex particle hydrogels. RSC Adv 7:44673–44679

    Article  CAS  Google Scholar 

  4. Montalbán MG, Bolívar CL, Baños FGD, Víllora G (2015) Effect of temperature, anion, and alkyl chain length on the density and refractive index of 1-alkyl-3-methylimidazolium-based ionic liquids. J Chem Eng Data 60:1986–1996

    Article  Google Scholar 

  5. Galarneau A, Barodawalla A, Pinnavaia TJ (1995) Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529–531

    Article  CAS  Google Scholar 

  6. Sato K, Fujikawa E, Cecilia JA (2022) Increased protonation of a mesopore surface in a porous clay nanoheterostructure. J Phys Chem C 126:12615–12622

    Article  CAS  Google Scholar 

  7. Cecilia JA, Sancho CG, García EV, Jiménez JJ, Castellón ER (2018) Synthesis, characterization, uses and applications of porous clays heterostructures: a review. Chem Rec 18:1085–1104

    Article  CAS  PubMed  Google Scholar 

  8. Essih S, Cecilia JA, Jimenez-Gomez CP, Garcia-Sancho C, Garcia-Mateos FJ, Rosas JM, Moreno-Tost R, Franco F, Maireles-Torres P (2022) Synthesis of porous clay heterostructures modified with SiO2–ZrO2 nanoparticles for the valorization of furfural in one-pot process. Adv Sustainable Syst 6:2100453

    Article  CAS  Google Scholar 

  9. Sato K, Cecilia JA (2023) Shrinkage dynamics of organic template substances with long alkyl chains toward porous material design. J Phys Chem C 127:19698–19704

    Article  CAS  Google Scholar 

  10. Ridley J, Zerner M (1973) An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theor Chim Acta 32:111–134

    Article  CAS  Google Scholar 

  11. Sato K, Kamaya M (2020) Origin of enhanced boric acid adsorption in light-burned magnesium oxide. J Chem Phys 153:124704

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. Comp Chem 25:1157–1174

    Article  CAS  Google Scholar 

  13. Gear CW (1971) Numerical initial values problems in ordinary differential equations. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  14. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  15. Woodcock LV (1971) Isothermal molecular dynamics calculations for liquid salts. Chem Phys Lett 10:257–261

    Article  CAS  Google Scholar 

  16. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  17. Sato K, Shanai D, Hotani Y, Ougizawa T, Ito K, Hirata K, Kobayashi Y (2006) Positronium formed by recombination of positron-Electron pairs in polymers. Phys Rev Lett 96:228302

    Article  CAS  PubMed  Google Scholar 

  18. Sato K, Sprengel W (2012) Element-specific study of local segmental dynamics of polyethylene terephthalate upon physical aging. J Chem Phys 137:104906

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Y, Li DD, Qu BY, Zhou RL, Zhang B, Sato K (2017) Anomalous packing state in Ce-Ga-Cu bulk metallic glasses. Intermetallics 84:25–29

    Article  CAS  Google Scholar 

  20. Yu RS, Ito K, Hirata K, Sato K, Zheng W, Kobayashi Y (2003) Positron annihilation study of defects and Si nanoprecipitation in sputter-deposited silicon oxide films. Chem Phys Lett 379:359–363

    Article  CAS  Google Scholar 

  21. Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510

    Article  CAS  Google Scholar 

  22. Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58

    Article  CAS  Google Scholar 

  23. Ito K, Oka T, Kobayashi Y, Shirai Y, Wada K, Matsumoto M, Fujinami M, Hirade T, Honda Y, Hosomi H, Nagai Y, Inoue K, Saito H, Sakaki K, Sato K, Shimazu A, Uedono A (2008) Interlaboratory comparison of positron annihilation lifetime measurements. Mater Sci Forum 607:248–250

    Article  Google Scholar 

  24. Ito K, Oka T, Kobayashi Y, Shirai Y, Saito H, Honda Y, Nagai Y, Fujinami M, Uedono A, Sato K, Hirade T, Shimazu A, Hosomi H, Sakaki K (2008) Interlaboratory comparison of positron annihilation lifetime measurements for synthetic fused silica and polycarbonate. J Appl Phys 104:0261021–0261023

    Article  Google Scholar 

  25. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Meth Phys Res A 374:235–244

    Article  CAS  Google Scholar 

  26. Sato K, Fujimoto K, Dai W, Hunger M (2013) Molecular mechanism of heavily adhesive Cs: why radioactive Cs is not decontaminated from soil. J Phys Chem C 117:14075–14080

    Article  CAS  Google Scholar 

  27. Sato K, Murakami H, Ito K, Hirata K, Kobayashi Y (2009) Probing the elemental environment around the free volume in polymers with positron annihilation age-momentum correlation spectroscopy. Macromolecules 42:4853–4857

    Article  CAS  Google Scholar 

  28. Sato K, Baier F, Rempel AA, Sprengel W, Schaefer H-E (2003) Observation of high-temperature thermal vacancies in Al70Pd21Mn9 quasicrystals. Phys Rev B 68:214203

    Article  Google Scholar 

  29. Sato K, Fujimoto K, Nakata M, Hatta T (2011) Diffusion-reaction of water molecules in angstrom pores as basic mechanism of biogenic quartz formation. J Phys Chem C 115:18131–18135

    Article  CAS  Google Scholar 

  30. Sato K (2011) Origin of organism-dependent biogenic silica quartz formation. J Phys Chem B 115:14874–14877

    Article  CAS  PubMed  Google Scholar 

  31. Sato K (2018) Study of salt precipitation in polymer electrolytes based on poly(ethylene oxide) and EMImTf ionic liquid. J Phys Chem B 122:7009–7014

    Article  CAS  PubMed  Google Scholar 

  32. Sato K, Numata K, Dai W, Hunger M (2014) Long-term self-assembly of smectite nanoparticles influenced by the states of the interlayer cations. Phys Chem Chem Phys 16:10959–10964

    Article  CAS  PubMed  Google Scholar 

  33. Sato K, Numata K, Dai W, Hunger M (2014) Tunable states of interlayer cations in two-dimensional materials. Appl Phys Lett 104:131901

    Article  Google Scholar 

  34. Sato K, Fujimoto K, Dai W, Hunger M (2016) Quantitative elucidation of Cs adsorption sites in clays: toward sophisticated decontamination of radioactive Cs. J Phys Chem C 120:1270–1274

    Article  CAS  Google Scholar 

  35. Sato K, Hunger M (2020) Carbon dioxide adsorption in open nanospaces formed by overlap of saponite clay nanosheets. Communications Chemistry 3:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meckl S, Zeidler MD (1988) Self-diffusion measurements of ethanol and propanol. Mol Phys 63:85–95

    Article  CAS  Google Scholar 

  37. Markiewicz R, Klimaszyk A, Jarek M, Taube M, Florczak P, Kempka M, Fojud Z, Jurga S (2021) Influence of alkyl chain length on thermal properties, structure, and self-diffusion coefficients of alkyltriethylammonium-based ionic liquids. Int J Mol Sci 22:5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith DH (1979) Concentration and temperature dependence of the counterion self-diffusion coefficient in aqueous solutions of hexadecyltrimethylammonium bromide. J Colloid Inter Sci 68:70–81

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by a Grant-in-Aid of the Japanese Ministry of Education, Science, Sports and Culture (Grant No. 22K03465).

Author information

Authors and Affiliations

Authors

Contributions

KS is responsible for overall investigations.

Corresponding author

Correspondence to Kiminori Sato.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K. Thermodynamic transformations of entangled bulky organic monomers with long alkyl chains. Struct Chem (2023). https://doi.org/10.1007/s11224-023-02257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-023-02257-2

Keywords

Navigation