Skip to main content
Log in

Effect of sulfur defects on the photoelectric and magnetic properties of metal-doped CrS2: first-principles study

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

On the basis of first principles, the effect of sulfur (S) defects on the photoelectric and magnetic properties of transition metal, alkali metal, and rare earth element doped CrS2 systems is studied. The modification of certain atoms reduces the formation energy of the CrS2 system under S vacancy defects (VS), resulting in a more stable defect structure. Studies of the electronic structure of monolayer CrS2 reveal that it possesses magnetic metal properties. By substituting Cr atoms, the transition metal (TM) is incorporated into the system, and magnetic modulation is achieved. Magnetic semi-metallic properties are exhibited by both the VS-deficient system and the mixed system of VS-deficient monolayer CrS2 doped with Mn, V, and Fe atoms, respectively. The bandgap is effectively opened for the Ni-doped VS hybrid system, and the system exhibits magnetic semiconductor properties. The optical properties demonstrate that the optical response range of La-doped materials has been significantly expanded and can be employed effectively in both the infrared and visible spectra. In varying degrees, the dopant atoms enhanced the optical properties of the VS system in the infrared light spectrum. The aforementioned findings open up new avenues for the design and experimental investigation of this material, in particular, optoelectronic materials and spin devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D-E, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  2. Leroux M, Cario L, Bosak A, Rodiere P (2018) Traces of charge density waves in NbS2. Phys Rev B 97

  3. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    Article  CAS  PubMed  Google Scholar 

  4. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2 (vol 11, pg 5111. Nano Lett 12(2012):526–526

    Google Scholar 

  5. Huang X, Liu W, Zhang A, Zhang Y, Wang Z (2016) Ballistic transport in single-layer MoS2 piezotronic transistors. Nano Res 9:282–290

    Article  CAS  Google Scholar 

  6. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim H-Y, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  CAS  PubMed  Google Scholar 

  7. Xia C, Li J (2016) Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J Semicond 37:051001

    Article  Google Scholar 

  8. Zhou W, Jiang Z, Chen M, Li Z, Luo X, Guo M, Yang Y, Yu T, Yuan C, Wang S (2022) Directly anchoring non-noble metal single atoms on 1T-TMDs with tip structure for efficient hydrogen evolution. Chem Eng J 428:131210

    Article  CAS  Google Scholar 

  9. Xia X-Y, Ding L-Y, Lv Q, Wang X-D, Liao L-S (2022) Vapor-phase growth strategies of fabricating organic crystals for optoelectronic applications. Adv Electron Mater 8

  10. Rajendran Nair GK, Abdelaziem A, Zhao X, Wang X, Hu D, Wu Y, Xun C, Le Goualher F, Zhu C, Yin PLP (2022) Chemical vapor deposition of phase-pure 2D 1T-CrS2. Phys Status Solidi (RRL)–Rapid Res Lett 16:2100495

    Article  CAS  Google Scholar 

  11. Zhao P, Liang Y, Ma Y, Huang B, Dai Y (2019) Janus Chromium dichalcogenide monolayers with low carrier recombination for photocatalytic overall water-splitting under infrared light. J Phys Chem C 123:4186–4192

    Article  CAS  Google Scholar 

  12. Yuan X, Yang M, Wang L, Li Y (2017) Structural stability and intriguing electronic properties of two-dimensional transition metal dichalcogenide alloys. Phys Chem Chem Phys 19:13846–13854

    Article  CAS  PubMed  Google Scholar 

  13. Sun F, Hong A, Zhou W, Yuan C, Zhang W (2020) Prediction for structure stability and ultrahigh hydrogen evolution performance of monolayer 2H-CrS2. Mater Today Commun 25

  14. Habib MR, Wang S, Wang W, Xiao H, Obaidulla SM, Gayen A, Khan Y, Chen H, Xu M (2019) Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale 11:20123–20132

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Zhou X, Pan Y, Qiao J, Kong X, Kaun C-C, Ji W (2018) Layer and doping tunable ferromagnetic order in two-dimensional CrS2 layers. Phys Rev B 97

  16. Chen S-B, Zeng Z-Y, Chen X-R, Yao X-X (2020) Strain-induced electronic structures, mechanical anisotropy, and piezoelectricity of transition-metal dichalcogenide monolayer CrS2. J Appl Phys 128

  17. Kumar R, Chand F (2023) Tuning of optical performance of CrS2 monolayer using strain engineering. Mater Today: Proc

  18. Tian X-H, Zhang J-M (2019) The electronic, magnetic and optical properties of single-layer CrS2 with vacancy defects. J Magn Magn Mater 487

  19. Cakir D, Peeters FM, Sevik C (2014) Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: a comparative study. Appl Phys Lett 104

  20. Xu Z-H, Chen Z, Yuan Q-M (2021) Effects of doping Ti, Nb, Ni on the photoelectric properties of monolayer 2H–WSe2. Phys E 133:114846

    Article  CAS  Google Scholar 

  21. Xiao W-Z, Xiao G, Rong Q-Y, Chen Q, Wang L-L (2017) Electronic and magnetic properties of SnS2 monolayer doped with 4d transition metals. J Magn Magn Mater 438:152–162

    Article  CAS  Google Scholar 

  22. Tiwari S, Van de Put ML, Sorée B, Vandenberghe WG (2021) Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers. npj 2D Mater Appl 5:54

    Article  CAS  Google Scholar 

  23. Tian S, Zhang L, Xie R, Lu A, Huang Y, Xing H, Chen X (2023) The electronic, magnetic and optical properties of GaN monolayer doped with rare-earth elements. Solid State Commun 371:115292

    Article  CAS  Google Scholar 

  24. Zhao X, Zhang X, Wang T, Wei S, Yang L (2018) Electronic structures and optical properties of ZrS2 monolayer by n-and p-type doping. J Alloy Compd 748:798–803

    Article  CAS  Google Scholar 

  25. Yang B, Zheng H, Han R, Du X, Yan Y (2014) Tuning the magnetism of a ZrS 2 monolayer by substitutional doping. RSC Adv 4:54335–54343

    Article  CAS  Google Scholar 

  26. Ozbal G, Senger RT, Sevik C, Sevincli H (2019) Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides. Phys Rev B 100

  27. Guo H, Lu N, Wang L, Wu X, Zeng XC (2014) Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J Phys Chem C 118:7242–7249

    Article  CAS  Google Scholar 

  28. Wei L, Liu G, Fan D, Zhang G (2018) Electronic theory study on the electronic structure and optical properties of S-adsorbed graphene. Modern Phys Lett B 32

  29. Wang D, Yang L, Cao J (2021) Torsion control of the electronic and optical properties of monolayer WS2: a first-principles study. Chem Phys 546:111181

    Article  CAS  Google Scholar 

  30. Wang K, Xiao Q, Xie Q, Wang L, He T, Chen H, Shi J (2019) First-principles study of electronic structure and optical properties of La-Doped AlN. J Electron Mater 48:5135–5142

    Article  CAS  Google Scholar 

  31. Xue X, Wang X, Song Y, Mi W (2018) Electronic structure of transitional metal doped two dimensional 1T-TaS2: a first-principles study. J Alloy Compd 739:723–728

    Article  CAS  Google Scholar 

  32. Bafekry A, Faraji M, Hieu N, Khatibani AB, Fadlallah MM, Gogova D, Ghergherehchi M (2022) Tunable electronic properties of porous graphitic carbon nitride (C6N7) monolayer by atomic doping and embedding: a first-principle study. Appl Surf Sci 583:152270

    Article  CAS  Google Scholar 

  33. Bafekry A, Faraji M, Hieu N, Ang YS, Karbasizadeh S, Sarsari IA, Ghergherehchi M (2021) Two-dimensional Dirac half-metal in porous carbon nitride C6N7 monolayer via atomic doping. Nanotechnology 33:075707

    Article  Google Scholar 

  34. Bafekry A, Faraji M, Fadlallah M, Hoat D, Khatibani AB, Sarsari IA, Ghergherehchi M (2021) Effect of adsorption and substitutional B doping at different concentrations on the electronic and magnetic properties of a BeO monolayer: a first-principles study. Phys Chem Chem Phys 23:24922–24931

    Article  CAS  PubMed  Google Scholar 

  35. Dong Z, Jiang T, Xu B, Zhong H, Zhang B, Liu G, Li Q, Yang Y (2021) Density functional theory study on electronic structure of tetrahedrite and effect of natural impurities on its flotation property. Miner Eng 169

  36. Wang X, Zhang Y, Si H, Zhang Q, Wu J, Gao L, Wei X, Sun Y, Liao Q, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y (2020) Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J Am Chem Soc 142:4298–4308

    Article  CAS  PubMed  Google Scholar 

  37. Bafekry A, Faraji M, Karbasizadeh S, Sarsari IA, Jappor H, Ghergherehchi M, Gogova D (2021) Two-dimensional FeTe 2 and predicted Janus FeXS (X: Te and Se) monolayers with intrinsic half-metallic character: tunable electronic and magnetic properties via strain and electric field. Phys Chem Chem Phys 23:24336–24343

    Article  CAS  PubMed  Google Scholar 

  38. Bafekry A, Fadlallah M, Faraji M, Shafique A, Jappor H, Sarsari IA, Ang YS, Ghergherehchi M (2022) Two-dimensional penta-like PdPSe with a puckered pentagonal structure: a first-principles study. Phys Chem Chem Phys 24:9990–9997

    Article  CAS  PubMed  Google Scholar 

  39. Bafekry A, Fadlallah MM, Faraji M, Shafique A, Jappor HR, Sarsari IA, Ang YS, Ghergherehchi M (2023) Reply to the ‘Comment on “Two-dimensional penta-like PdPSe with a puckered pentagonal structure: a first-principles study”’ by S. Chowdhury, F. Shojaei and B. Mortazavi. Phys Chem Chem Phys 25:8966–8968

    Article  CAS  PubMed  Google Scholar 

  40. Bafekry A, Faraji M, Karbasizadeh S, Jappor H, Sarsari IA, Ghergherehchi M, Gogova D (2021) Investigation of vacancy defects and substitutional doping in AlSb monolayer with double layer honeycomb structure: a first-principles calculation. J Phys: Condens Matter 34:065701

    Google Scholar 

  41. Reshak AH, Auluck S (2005) Full-potential calculations of the electronic and optical properties for 1T and 2H phases of TaS2 and TaSe2. Phys B-Condensed Matter 358:158–165

    Article  CAS  Google Scholar 

  42. Albertini OR, Liu AY, Calandra M (2017) Effect of electron doping on lattice instabilities in single-layer 1H-TaS2. Phys Rev B 95

  43. Froyen S (1989) Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations. Phys Rev B 39:3168

    Article  CAS  Google Scholar 

  44. Wang J, Sun F, Yang S, Li Y, Zhao C, Xu M, Zhang Y, Zeng H (2016) Robust ferromagnetism in Mn-doped MoS2 nanostructures. Appl Phys Lett 109

  45. Perdew B (1996) Ernzerhof, Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  46. Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  47. Dudarev SL, Botton GA, Savrasov SY, Humphreys C, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  48. Segall M, Lindan PJ, Probert MA, Pickard CJ, Hasnip PJ, Clark S, Payne M (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condensed Matter 14:2717

    Article  CAS  Google Scholar 

  49. Solovyev IV, Dederichs PH, Anisimov VI (1994) Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys Rev B Condensed Matter 50:16861–16871

    Article  CAS  Google Scholar 

  50. Solovyev I, Dederichs P, Anisimov V (1994) Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys Rev B 50:16861

    Article  CAS  Google Scholar 

  51. Zhou Z, Li B, Liu X, Li Z, Zhu S, Liang Y, Cui Z, Wu S (2021) Recent progress in photocatalytic antibacterial. ACS Appl Bio Mater 4:3909–3936

    Article  CAS  PubMed  Google Scholar 

  52. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227

    Article  CAS  PubMed  Google Scholar 

  53. Wang D, Yang L, Cao J (2021) First-principles study on the magnetic properties of IB group transition metal-doped MoS2. Mod Phys Lett B 35:2141002

    Article  CAS  Google Scholar 

  54. Zhuang HL, Johannes MD, Blonsky MN, Hennig RG (2014) Computational prediction and characterization of single-layer CrS2. Appl Phys Lett 104

  55. Wang J, Rehman SU, Tariq Z, Zhang X, Zheng J, Butt FK, Li C (2021) Pristine and Janus chromium dichalcogenides: potential photocatalysts for overall water splitting in wide solar spectrum under strain and electric field. Solar Energy Mater Solar Cells 230

  56. Zheng H, Zhang J, Yang B, Du X, Yan Y (2015) A first-principles study on the magnetic properties of nonmetal atom doped phosphorene monolayers. Phys Chem Chem Phys 17:16341–16350

    Article  CAS  PubMed  Google Scholar 

  57. He J, Liu G, Zhang C, Zhang G (2023) Electronic structure and magnetic properties of noble metal (Rh, Ru, Pd, Ag) adsorbed vacancy-defective arsenene: a first-principles study. Int J Quantum Chem 123:e27197

    Article  CAS  Google Scholar 

  58. Wu N, Zhao X, Ma X, Xin Q, Liu X, Wang T, Wei S (2017) Strain effect on the electronic properties of 1T-HfS2 monolayer. Physica E 93:1–5

    Article  Google Scholar 

  59. Tao P-C, Huang Y, Zhou X-H, Chen X-S, Lu W (2017) First principles investigation of the tuning in metal-MoS2 interface induced by doping. Acta Phys Sin 66

  60. Eid MR, Al-Hossainy AF (2023) Combined experimental thin film, DFT-TDDFT computational study, flow and heat transfer in PG-MoS2/ZrO2 (C) hybrid nanofluid. Waves Random Complex Media 33:1–26

    Article  Google Scholar 

  61. Mubarak AA (2016) The first-principle study of the electronic, optical and thermoelectric properties of XTiO3 (X = Ca, Sr and Ba) compounds. Int J Modern Phys B 30

  62. Zhao Q, Guo Y, Si K, Ren Z, Bai J, Xu X (2017) Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys Status Solidi (B) 254:1700033

    Article  Google Scholar 

  63. Vu TV, Lavrentyev AA, Thuan DV, Nguyen CV, Khyzhun OY, Gabrelian BV, Tran KC, Luong HL, Tung PD, Pham CD, Phuc Toan D, Vo DD (2019) Electronic properties and optical behaviors of bulk and monolayer ZrS2: A theoretical investigation. Superlattices Microstruct 125:205–213

    Article  CAS  Google Scholar 

  64. Ni J, Yang L, Wang T, Jiang S (2023) Influence of sulfur defects on the electronic and optical properties of torsional NbS2: first-principles calculation. Phys Status Solidi B-Basic Solid State Phys 260

  65. Ni J, Yang L, Zheng W, Bao J (2023) Effect of strain on the electronic and optical properties of (non-)metal adsorbed NbS2 monolayer. J Phys-Condensed Matter 35

  66. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019

Download references

Funding

The authors acknowledge National Natural Science Foundation of China (Approval No: 11102118) and Liaoning Province “Millions of Talents Project” Fund (Approval No: 100010131).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and design of the study. Huaidong Liu organized the data and graphs, created a framework, and organized the paper. Xingbin Wei searched for relevant research materials, Yanshen Zhao performed the data analysis, Shihang Sun outlined the blueprint for the research direction, and Lu Yang provided research guidance and assistance.

Corresponding author

Correspondence to Lu Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, L., Wei, X. et al. Effect of sulfur defects on the photoelectric and magnetic properties of metal-doped CrS2: first-principles study. Struct Chem 35, 923–941 (2024). https://doi.org/10.1007/s11224-023-02241-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02241-w

Keywords

Navigation