Skip to main content
Log in

Enhanced antioxidant properties of novel curcumin derivatives: a comprehensive DFT computational study

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Oxidative stress driven by the accumulation of free radicals and reactive oxygen species (ROS) in the human body is a key contributor to various diseases. Curcumin, a polyphenolic compound derived from turmeric, has garnered attention for its antioxidant potential. In this context, a recent experimental study by Hao et al. introduced curcumin derivatives with incorporated electron-donating groups (allyl and isopentenyl), aiming to enhance antioxidant activity while circumventing the limitations of traditional curcumin. Building upon this experimental foundation, our study employs computational techniques (DFT) to unravel the molecular mechanisms underpinning the superior antioxidant effects observed in these novel derivatives. We investigated three prominent antioxidant mechanisms: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Our results reveal that the allyl and isopentenyl groups contribute in enhancing the antioxidant properties of the derivatives, as evidenced by reduced energies of most of thermodynamic parameters. Moreover, the analysis of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies indicates their enhanced reactivity. Notably, the computational investigation of spin densities validates the radical scavenging potential of these derivatives. Our findings suggest that the strategically designed derivatives exhibit powerful antioxidant properties, positioning them as promising candidates for further therapeutic applications. This comprehensive study bridges experimental findings with computational insights to unravel the intricate molecular mechanisms driving the enhanced antioxidant efficacy of the newly developed curcumin derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Malik Al-Rubaei ZM, Mohammad TU, Karim Ali L (2014) Pak J Biol Sci 17:1237–1241

    Article  Google Scholar 

  2. Suryanarayana P, Satyanarayana A, Balakrishna N, Kumar PU, Reddy GB (2007) Med Sci Monit 13:BR286–292

  3. Kawanishi N, Kato K, Takahashi M, Mizokam T, Otsuka Y, Imaizumi A, Shiva D, Yano H, Suzuki K (2013) Biochem Biophys Res Commun 441:573–578

    Article  CAS  PubMed  Google Scholar 

  4. Boroumand N, Samarghandian S, Hashemy SI (2018) J Herbmed Pharmacol 7:211–219

    Article  CAS  Google Scholar 

  5. Chainani-Wu N (2003) J Altern Complement Med 9:161–168

    Article  PubMed  Google Scholar 

  6. Wright JS (2002) THEOCHEM 591:207–217

    Article  CAS  Google Scholar 

  7. Jayaprakasha GK, Rao LJ, Sakariah KK (2006) Food Chem 98:720–724

    Article  CAS  Google Scholar 

  8. Ruby AJ, Kuttan G, Dinesh Babu K, Rajasekharan KN, Kuttan R (1995) Cancer Lett 94:79–83

    Article  CAS  PubMed  Google Scholar 

  9. Llano S, Gómez S, Londoño J, Restrepo A (2019) Phys Chem. Chem Phys

  10. Jitoe A, Masuda T, Tengah IGP, Suprapta DN, Gara IW, Nakatani N (1992) J Agric Food Chem 40:1337–1340

    Article  CAS  Google Scholar 

  11. Sokmen M, Akram Khan M (2016) Inflammopharmacol 24:81–86

    Article  CAS  Google Scholar 

  12. Sun JL, Ji HF, Shen L (2019) Food Nutr Res 63:3451

    CAS  Google Scholar 

  13. Mošovská S, Petáková P, Kaliňák M, Mikulajová A (2016) Acta Chim Slov 9:130–135

    Article  Google Scholar 

  14. Shen L, Ji HF (2007) Spectrochim Acta, Part A 67:619–623

    Article  Google Scholar 

  15. Rodrigues FC, Anilkumar NV, Thakur G (2019) Eur J Med Chem 177:76–104

    Article  CAS  PubMed  Google Scholar 

  16. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Molecular Pharmaceutics 4:807–818

  17. Pari L, Tewas D, Eckel J (2008) Arch Physiol Biochem 114:127–149

    Article  CAS  PubMed  Google Scholar 

  18. Yallapu MM, Jaggi M, Chauhan SC (2012) Drug Discovery Today 17:71–80

    Article  CAS  PubMed  Google Scholar 

  19. Hao T, Wang K, Zhang S, Yang S, Wang P, Gao F, Zhao Y, Guo N, Yu P (2020) Eur J Med Chem 207:112798

    Article  CAS  PubMed  Google Scholar 

  20. Najafi M, Najafi M, Najafi H (2012) Can J Chem 90:915–926

    Article  CAS  Google Scholar 

  21. Vo QV, Nam PC, Bay MV, Thong NM, Hieu LT, Mechler A (2019) RSC Adv 9:42020–42028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santos JLF, Kauffmann AC, da Silva SC, Silva VCP, de Souza GLC (2020) J Mol Model 233

  23. da S Filho AH, de Souza GLC (2020) Phys Chem. Chem Phys 22:17659–17667

  24. Mendes RA, Almeida SKC, Soares IN, Barboza CA, Freitas RG, Brown A, GLC de Souza (2019) J Mol Model 89

  25. Miar M, Shiroudi A , Pourshamsian K, Oliaey AR, Hatamjafari F (2020) J Chem Res 1–12

  26. Muğlu H, Çavuş MS, Bakır T, Yakan H (2019) J Mol Struct 1196:819

    Article  Google Scholar 

  27. Taguchi AT, O’Malley PJ, Wraight CA, Dikanov SA (2017) J Phys Chem 121:10199–10292

    Article  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, LiX Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, KleneM, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli JW, Ochterski C, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09 A

  29. Feller D (1996) J Comput Chem 17:1571–1586

    Article  CAS  Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  32. de Souza GLC, Peterson KA (2021) J Phys Chem A 125:198–208

    Article  PubMed  Google Scholar 

  33. Slabber CA, Grimmer CD, Robinson RS (2016) J Nat Prod 79:2726–2730

    Article  CAS  PubMed  Google Scholar 

  34. Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F, Vannacci A (2015) J Herb Med 5:57–70

    Article  Google Scholar 

  35. Modasiya MK, Patel VM (2012) Int J Pharm Life Sci 3:1490–1497

  36. Jeliński T, Przybyłek M, Cysewski P (2019) Pharm Res 36:116

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cui Z, Yao L, Ye J, Wang Z, Hu Y (2021) J Mol Liq 338:116795

    Article  CAS  Google Scholar 

  38. Savale SK (2017) Journal of PharmaSciTech 7:31–35

    CAS  Google Scholar 

  39. Ucisik MH, Küpcü S, Schuster B, Sleytr UB (2013) J Nanobiotechnol 11

  40. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  41. Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M (2005) Int J Quantum Chem 102:1069–1079

    Article  CAS  Google Scholar 

  42. You-Min S, Ruo-X W, Shi-Ling Y, Xian-Jie L, Cheng-Bu L (2004) Chin J Chem 22:827–830

    Article  Google Scholar 

  43. Payton F, Sandusky P, Alworth WL (2007) J Nat Prod 70

  44. Boulmokh Y, Belguidoum K, Meddour F, Amira-Guebailia H (2021) Struct Chem 32:1907–1923

    Article  CAS  Google Scholar 

  45. Szeląg M, Urbaniak A, Bluyssen HAR (2015) Open Chem 13:17–31

    Article  Google Scholar 

  46. Rimarcík J, Lukeš V, Klein E, Ilcin M (2010) THEOCHEM 952:25–30

    Article  Google Scholar 

  47. Michalík M, Vagánek A, Poliak P (2014) Acta Chimica Slovaca 7:123–128

    Article  Google Scholar 

  48. Xue Y, Zheng Y, An L, Dou Y, Liu Y (2014) Food Chem 151:198–206

    Article  CAS  PubMed  Google Scholar 

  49. Wang G, Xue Y, An L, Zheng Y, Dou Y, Zhang L, Liu Y (2015) Food Chem 171:89–97

    Article  CAS  PubMed  Google Scholar 

  50. Zheng YZ, Zhou Y, Liang Q, Chen DF, Guo R, Xiong CL, Xu XJ, Zhang ZN, Huang ZJ (2017) Dyes Pigm 141:179–187

    Article  CAS  Google Scholar 

  51. Biela M, Rimarcík J, Senajova E, Kleinova A, Klein E (2020) Phytochemistry 180:112528

    Article  CAS  PubMed  Google Scholar 

  52. Lewars EG (2003) Kluwer Academic Publishers Norwell MA USA

  53. Hatch FT, Lightstone FC, Colvein ME (2000) Environ Mol Mutagen 35:279–299

    Article  CAS  PubMed  Google Scholar 

  54. Schweizer J, Ressouche E (2001) Magnetism: molecules to materials I: models and experiments (chapter)

  55. Savarese M, Bremond E, Ciofini I, Adamo C (2020) J Chem Theory Comput 16:3567–3577

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Y. Boulmokh: Investigation, methodology, writing original draft, review and editing. K. Belguidoum; Investigation and review. F. Meddour; Investigation and review. H. Amira-Guebailia; Supervision, methodology, investigation, writing original draft, and review.

Corresponding author

Correspondence to Yamina Boulmokh.

Ethics declarations

Consent for publication

All authors whose names appear on the submission approved the version to be published.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulmokh, Y., Belguidoum, K., Meddour, F. et al. Enhanced antioxidant properties of novel curcumin derivatives: a comprehensive DFT computational study. Struct Chem 35, 825–839 (2024). https://doi.org/10.1007/s11224-023-02237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02237-6

Keywords

Navigation