Skip to main content
Log in

Synthesis, crystal structure, and catechol oxidase activity of a di-nuclear paddle-wheel Cu (II) carboxylate complex

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A dinuclear copper (II) complex, Cu2 (RCOO)4(L)2 (1) while [RCOO = benzoate, L = 2-amino-3-chloro-5-trifluoro methyl pyridine], with square pyramidal geometry with four carboxylate bridged groups has been reported. This dinuclear copper (II) unit (with the most robust, frequently occurring paddle wheel structure) was characterized by single crystal X-ray diffraction, IR, UV, CV, TGA, and EPR studies. It exhibits catechol oxidase activity in methanol medium and the catecholase activity was monitored by the UV–Vis spectroscopy. The kinetic parameters have been determined by using Michaelis–Menten equation which shows that the complex is an efficient catalyst with very high turnover number. Preliminary mechanistic investigation of the catalytic behavior was established with the help of ESI–MS spectra.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The corresponding.CIF files are available in the Cambridge Structural Database (CSD); for complex 1, the CCDC number is 2,269,299.

Code availability

Not applicable.

References

  1. Noro S, Kitagawa S, Kondo M, Seki K (2000) A new, methane adsorbent, porous coordination polymer [{CuSiF6 (4, 4′-bipyridine) 2} n]. Angew Chem Int Ed. https://doi.org/10.1002/1521-3773(20000616)39:12%3c2081::AID-ANIE2081%3e3.0.CO;2-A

    Article  Google Scholar 

  2. Chatterjee A, Mondal P, Chakraborty P, Kumar B, Mondal S, Rizzoli C, Saha R, Adhikary B, Dey SK (2023) Strategic synthesis of heptacoordinated Fe (III) bifunctional complexes for efficient water electrolysis. Angew Chem Int Ed. https://doi.org/10.1002/anie.202307832

    Article  Google Scholar 

  3. Liu GC, Li Y, Chi J, Xu N, Wang XL, Lin HY, Chen YQ (2020) Multi-functional fluorescent responses of cobalt complexes derived from functionalized amide-bridged ligand. Dyes Pigm. https://doi.org/10.1016/j.dyepig.2019

    Article  Google Scholar 

  4. Han Z, Wang K, Chen Y, Li J, Teat SJ, Yang S, Cheng P (2022) A multicenter metal–organic framework for quantitative detection of multicomponent organic mixtures. CCS Chem. https://doi.org/10.31635/ccschem.022.202101642

    Article  Google Scholar 

  5. Dai J-C, Wu X-T, Fu Z-Y, Cui C-P, Hu S-M, Du W-X, Wu L-M, Zhang H-H, Sun R-Q (2002) Synthesis, structure, and fluorescence of the novel cadmium (II)−trimesate coordination polymers with different coordination architectures. Inorg Chem. https://doi.org/10.1021/ic010794y

    Article  PubMed  Google Scholar 

  6. Han Z, Wang K, Zhou HC (2023) Preparation and quantitative analysis of multicenter luminescence materials for sensing function. Nat Protoc. https://doi.org/10.1038/s41596-023-00810-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dey SK, Bag B, Malik KMA, El FMS, Ribas J, Mitra S (2003) A quasi-tetrahedral Cu4 cluster and a helical-chain copper(II) complex with single syn−anti carboxylate bridges: crystal structure and magnetic properties. Inorg Chem. https://doi.org/10.1021/ic0206488

    Article  PubMed  Google Scholar 

  8. Reger DL, Debreczeni A, Reinecke B, Rassolov V, Smith MD, Semeniuc RF (2009) Highly organized structures and unusual magnetic properties of paddlewheel copper (II) carboxylate dimers containing the π− π stacking,1,8-naphthalimide synthon. Inorg Chem. https://doi.org/10.1021/ic901138h

    Article  PubMed  Google Scholar 

  9. Chattopadhyay K, Shaw BK, Saha SK, Ray D (2016) Unique trapping of paddlewheel copper (ii) carboxylate by ligand-bound Cu 2 fragments for [Cu 6] assembly. Dalton Trans. https://doi.org/10.1039/C6DT00103C

    Article  PubMed  Google Scholar 

  10. Viola MN, Ikram M, Rehman S, Akhtar M, AlDamen M, Schulzke C (2019) A paddle wheel dinuclear Copper(II) carboxylate: crystal structure, thermokinetic and magnetic properties. J Mol Struc. https://doi.org/10.1016/j.molstruc.2019.06.095

    Article  Google Scholar 

  11. Jenniefer SJ, Muthiah PT (2013) Synthesis, characterization and X-ray structural studies of four copper (II) complexes containing dinuclear paddle wheel structures. Chem Cent J. https://doi.org/10.1186/1752-153X-7-35

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tonigold M, Volkmer D (2010) Comparative solvolytic stabilities of copper (II) nanoballs and dinuclear Cu (II) paddle wheel units. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2010.06.022

    Article  Google Scholar 

  13. Walczak-Nowicka ŁJ, Herbet M (2022) Sodium benzoate-harmfulness and potential use in therapies for disorders related to the nervous system: a review. Nutrients. https://doi.org/10.3390/nu14071497

    Article  PubMed  PubMed Central  Google Scholar 

  14. Agterberg FP, Provó Kluit HA, Driessen WL, Oevering H, Buijs W, Lakin MT, Spek AL, Reedijk J (1997) Dinuclear paddle-wheel copper (II) carboxylates in the catalytic oxidation of carboxylic acids. Unusual polymeric chains found in the single-crystal X-ray structures of [tetrakis(μ-1-phenylcyclopropane-1-carboxylato-O,O’)bis(ethanol-O)dicopper (II)] and catena-poly[[bis(μ-diphenylacetato-O:O’)dicopper](μ3-diphenylacetato-1-O:2-O’:1’-O’)(μ3-diphenylacetato-1-O:2-O’:2’-O’)]. Inorg Chem. https://doi.org/10.1021/ic9614733

  15. Banu KS, Mukherjee M, Guha A, Bhattacharya S, Zangrando E, Das D (2012) Dinuclear copper(II) complexes: Solvent dependent catecholase activity. Polyhedron. https://doi.org/10.1016/j.poly.2012.06.087

    Article  Google Scholar 

  16. Neves A, Rossi LM, Bortoluzzi AJ, Szpoganicz B, Wiezbicki C, Schwingel E, Haase W, Ostrovsky S (2002) Catecholase activity of a series of dicopper (II) complexes with variable Cu−OH (phenol) moieties. Inorg Chem. https://doi.org/10.1021/ic010708u

    Article  PubMed  Google Scholar 

  17. Rey NA, Neves A, Bortoluzzi AJ, Pich CT, Terenzi H (2007) Catalytic promiscuity in biomimetic systems: catecholase-like activity, phosphatase-like activity, and hydrolytic DNA cleavage promoted by a new dicopper (II) hydroxo-bridged complex. Inorg Chem. https://doi.org/10.1021/ic0613107

    Article  PubMed  Google Scholar 

  18. Osório RE, Peralta RA, Bortoluzzi AJ, de Almeida VR, Szpoganicz B, Fischer FL, Terenzi H, Mangrich AS, Mantovani KM, Ferreira DE (2012) Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper (II) complexes: models for catechol oxidases and hydrolases. Inorg Chem. https://doi.org/10.1021/ic201876k

    Article  PubMed  Google Scholar 

  19. Banu KS, Chattopadhyay T, Banerjee A, Bhattacharya S, Suresh E, Nethaji M, Zangrando E, Das D (2008) Catechol oxidase activity of a series of new dinuclear copper (II) complexes with 3, 5-DTBC and TCC as substrates: syntheses, X-ray crystal structures, spectroscopic characterization of the adducts and kinetic studies. Inorg Chem. https://doi.org/10.1021/ic701332w

    Article  PubMed  Google Scholar 

  20. Mandal S, Mukherjee J, Lloret F, Mukherjee R (2012) Modeling tyrosinase and catecholase activity using new m-xylyl-based ligands with bidentate alkylamine terminal coordination. Inorg Chem. https://doi.org/10.1021/ic3013848

    Article  PubMed  PubMed Central  Google Scholar 

  21. Torelli S, Belle C, Gautier-Luneau I, Pierre J, Saint-Aman E, Latour J, Le Pape L, Luneau D (2000) pH-Controlled change of the metal coordination in a dicopper (II) complex of the ligand H− BPMP: crystal structures, magnetic properties, and catecholase activity. Inorg Chem. https://doi.org/10.1021/ic991450z

    Article  PubMed  Google Scholar 

  22. Hwang IH, Jo YD, Kim H, Kim KB, Jung KD, Kim C, Kim Y, Kim SJ (2013) Catalytic transesterification reactions of one-dimensional coordination polymers containing paddle-wheel-type units connected by various bridging ligands. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2013.03.043

    Article  Google Scholar 

  23. Meng Q, Chen C, Wang L (2016) Synthesis, structure and catalytic properties of a Cu(II) coordination polymer constructed from paddle-wheel building blocks. J Clust Sci. https://doi.org/10.1007/s10876-016-0994-y

    Article  Google Scholar 

  24. Dutta B, Pal B, Dey S, Maity S, Ray PP, Mir MH (2022) Exploitation of structure-property relationships towards multi-dimensional applications of a paddle-wheel Cu(II) compound. Eur J Inorg Chem. https://doi.org/10.1002/ejic.202100904

    Article  Google Scholar 

  25. Bruker SA, SAINT S, Bruker AXS Inc (2016) Madison, Wisconsin

  26. Sheldrick GM (2015) Integrated apace-group and crystal structure determination. Acta Cryst A 71:3–8

  27. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8

  28. Dey SK, Shit S, Mitra S, Thompson LK, Malik KMA (2007) An antiferromagnetically coupled trinuclear Cu (II) complex containing μ (O, O′), μ (O) carboxylates and μ (O) phenoxide bridges. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2006.09.030

    Article  Google Scholar 

  29. Ackermann MN (1971) Infrared spectra of inorganic and coordination compounds (Nakamoto. ACS Publications, Kazuo)

    Book  Google Scholar 

  30. Dey SK, Bag B, Zhou Z, Chan AS, Mitra S (2004) Synthesis, characterization and crystal structure of a monomeric and a macrocyclic copper (II) complex with a large cavity using benzylacetylacetone ligand. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2003.12.014

    Article  Google Scholar 

  31. Chatterjee A, Chakraborty P, Kumar B, Rizzoli C, Mandal P, Dey SK (2022) Synthesis, characterization of one Cr (III) complex: an efficient chemosensor for Cr (III) ions and designing of a molecular logic gate. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.132486

  32. Sarkar M, Clerac R, Mathoniere C, Hearns NG, Bertolasi V, Ray D (2010) New μ4-oxido-bridged copper benzoate quasi-tetrahedron and bis-μ3-hydroxido-bridged copper azide and copper thiocyanate stepped cubanes: core conversion, structural diversity, and magnetic properties. Inorg Chem. https://doi.org/10.1021/ic100356y

    Article  PubMed  Google Scholar 

  33. Ojwach SO, Okemwa TT, Attandoh NW, Omondi B (2013) Structural and kinetic studies of the polymerization reactions of ε-caprolactone catalyzed by (pyrazol-1-ylmethyl)pyridine Cu(ii) and Zn(ii) complexes. Dalton Trans. https://doi.org/10.1039/C3DT51338F

    Article  PubMed  Google Scholar 

  34. Zippel F, Ahlers F, Werner R, Haase W, Nolting H-F, Krebs B (1996) Structural and functional models for the dinuclear copper active site in catechol oxidases: syntheses, X-ray crystal structures, magnetic and spectral Properties, and X-ray absorption spectroscopic studies in solid state and in solution. Inorg Chem. https://doi.org/10.1021/ic9513604

    Article  PubMed  Google Scholar 

  35. Jana A, Aliaga-Alcalde N, Ruiz E, Mohanta S (2013) Structures, magnetochemistry, spectroscopy, theoretical study, and catechol oxidase activity of dinuclear and dimer-of-dinuclear mixed-valence MnIIIMnII complexes derived from a macrocyclic ligand. Inorg Chem. https://doi.org/10.1021/ic400916h

    Article  PubMed  Google Scholar 

  36. Das M, Nasani R, Saha M, Mobin SM, Mukhopadhyay S (2015) Nickel (II) complexes with a flexible piperazinyl moiety: studies on DNA and protein binding and catecholase like properties. Dalton Trans. https://doi.org/10.1039/C4DT02675F

    Article  PubMed  Google Scholar 

  37. Vogel AI (1961) A text book of quantitative inorganic analysis. Wiley, New York

    Google Scholar 

  38. Mukherjee D, Nag P, Shteinman AA, Vennapusa SR, Mandal U, Mitra M (2021) Catechol oxidation promoted by bridging phenoxo moieties in a bis (μ-phenoxo)-bridged dicopper (ii) complex. RSC Adv. https://doi.org/10.1039/D1RA02787E

    Article  PubMed  PubMed Central  Google Scholar 

  39. Adhikari S, Banerjee A, Nandi S, Fondo M, Sanmartín-Matalobos J, Das D (2015) Structure, magnetism and catecholase activity of the first dicopper (ii) complex having a single μ-alkoxo bridge. RSC Adv. https://doi.org/10.1021/acs.jpcc.9b09272

    Article  Google Scholar 

  40. Yang C-T, Vetrichelvan M, Yang X, Moubaraki B, Murray KS, Vittal JJ (2004) Syntheses, structural properties and catecholase activity of copper (II) complexes with reduced Schiff base N-(2-hydroxybenzyl)-amino acids. Dalton Trans. https://doi.org/10.1039/B310262A

    Article  PubMed  Google Scholar 

  41. Sreenivasulu B, Zhao F, Gao S, Vittal JJ (2006) Synthesis, structures and catecholase activity of a new series of dicopper (II) complexes of reduced Schiff base ligands. Eur J Inorg Chem. https://doi.org/10.1002/ejic.200600022

    Article  Google Scholar 

  42. Caglar S, Aydemir IE, Adıgüzel E, Caglar B, Demir S, Buyukgungor O (2013) Four copper (II) diclofenac complexes with pyridine derivatives: synthesis, crystal structures, spectroscopic properties, thermal analysis and catechol oxidase activities. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2013.09.013

    Article  Google Scholar 

Download references

Acknowledgements

SKD gratefully acknowledge the Higher Education department, West Bengal, for funding the instrumental facilities to the SKBU. We are gratefully thankful to Dr. Rajat Saha of Kazi Nazrul University, WB, India, for his assistance.

Funding

This work was financially supported by the WB-DST (Project Memo No 746 (Sanc)/ST/P. S&T/15G dt. 22.11.2016.). We acknowledge the WB-DST fellowship (partial) and SVMM fellowship (partial) to P. C. and the INSPIER fellowship to A.C. (Ref. No. DST/INSPIRE Fellowship/2017/IF170767 dt. 04.07.2018) was funded by DST, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. PC and AC contributed equally. Complex preparation, data collection, and analysis were performed by Priyanka Chakraborty and Abhishikta Chatterjee. The first draft of the manuscript was written by Priyanka Chakraborty and Abhishikta Chatterjee and all authors commented on draft versions of the manuscript. Methodology, formal analysis, and visualization were performed by Priyanka Chakraborty and Abhishikta Chatterjee. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Subrata K. Dey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3829 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Chatterjee, A., Mandal, R. et al. Synthesis, crystal structure, and catechol oxidase activity of a di-nuclear paddle-wheel Cu (II) carboxylate complex. Struct Chem 35, 791–799 (2024). https://doi.org/10.1007/s11224-023-02225-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02225-w

Keywords

Navigation