Skip to main content
Log in

Semi-coordination Cu–O bond on a copper complex featuring O,O-donor ligand as potential antibacterial agent: green synthesis, characterization, DFT, in-silico ADMET profiling and molecular docking studies

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of 2-((5-methyl-pyridin-2-yl)amino)acetic acid (MPAA) and its copper complex (Cu-MPAA) has been performed. The new ligand, MPAA, was obtained via a catalyst-free reaction at room temperature by mixing a solution of 2-amino-5-methylpyridine (AMPy) with chloroacetic acid (CA) in a short time. The characterization of MPAA has been carried out using NMR and FTIR spectroscopies, while the complex has been characterized using UV–Vis spectroscopy, AAS, FTIR, molar conductivity, TGA–DSC, and magnetic moments. According to the DFT calculation, Cu(II) forms both coordination and semi-coordination bonds through the carboxylate group of MPAA. Antibacterial activity has been performed using the disk diffusion method against Staphylococcus aureus, Escherichia coli, Salmonella typhi, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The Cu-MPAA complex exhibited the highest activity compared to other tested compounds. Furthermore, molecular docking studies provided additional evidence in favor of these findings. Moreover, through in silico studies, the synthesized complex adhered to acceptable predictive ADMET features and drug-likeness rules. Collectively, we believe that this complex could make a significant contribution to the efficient design of metal-derived agents to treat microbial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Ananyev IV, Bokach NA, Kukushkinc VY (2020) Structure-directing sulfur metal noncovalent semicoordination bonding. Acta Crystallogr B Struct Sci Cryst Eng Mater 76:436–449. https://doi.org/10.1107/S2052520620005685

    Article  CAS  PubMed  Google Scholar 

  2. Havlíček L, Herchel R, Nemec I, Neugebauer P (2022) Weak antiferromagnetic interaction in Cu(II) complex with semi-coordination exchange pathway. Polyhedron 223. https://doi.org/10.1016/j.poly.2022.115962

  3. Valach F (1999) A bond-valence approach to the semicoordination of copper-oxygen and copper–nitrogen complexes. Polyhedron 18:699–706. https://doi.org/10.1016/S0277-5387(98)00342-8

    Article  CAS  Google Scholar 

  4. Sarma P, Sharma P, Frontera A et al (2021) Unconventional π-hole and Semi-coordination regium bonding interactions directed supramolecular assemblies in pyridinedicarboxylato bridged polymeric Cu(II) Compounds: Antiproliferative evaluation and theoretical studies. Inorganica Chim Acta 525. https://doi.org/10.1016/j.ica.2021.120461

  5. Nelyubina YV, Korlyukov AA, Fedyanin IV, Lyssenko KA (2013) Extremely long Cu⋯O contact as a possible pathway for magnetic interactions in Na2Cu(CO3)2. Inorg Chem 52:14355–14363. https://doi.org/10.1021/ic4024025

    Article  CAS  PubMed  Google Scholar 

  6. Tu Z, Shui J, Liu J et al (2023) Exploring the abundance and influencing factors of antimicrobial resistance genes in manure plasmidome from swine farms. J Environ Sci 124:462–471. https://doi.org/10.1016/j.jes.2021.11.030

    Article  CAS  Google Scholar 

  7. Sun J, Warden AR, Huang J et al (2019) Colorimetric and Electrochemical detection of Escherichia coli and antibiotic resistance based on a p-Benzoquinone-Mediated bioassay. Anal Chem 91:7524–7530. https://doi.org/10.1021/acs.analchem.8b04997

    Article  CAS  PubMed  Google Scholar 

  8. Balakrishnan S, Duraisamy S, Kasi M et al (2019) Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands. Heliyon 5. https://doi.org/10.1016/j.heliyon.2019.e01687

  9. Matar GM (2023) Global Access to Antimicrobials and Enhanced Emergence of Amr in Covid-19 Era. Int J Infect Dis 130:S46–S47

    Article  PubMed Central  Google Scholar 

  10. Aarjane M, Slassi S, Tazi B et al (2020) Synthesis, antibacterial evaluation and molecular docking studies of novel series of acridone- 1,2,3-triazole derivatives. Struct Chem 31:1523–1531. https://doi.org/10.1007/s11224-020-01512-0

    Article  CAS  Google Scholar 

  11. Larbi KS, Bouchoucha A, Bourouai MA, Djebbar S (2023) Novel metal (II) complexes with 2, 2’- bithiophene ligands as promising antibacterial agents: Spectral investigation, electrochemical behavior, DFT studies, in vitro and in silico biological properties. J Mol Struct 1291:135901. https://doi.org/10.1016/j.molstruc.2023.135901

    Article  CAS  Google Scholar 

  12. Juyal VK, Chand Thakuri S, Panwar M et al (2023) Synthesis, characterization, and in silico molecular docking study of bidentate hydroxy α-aminophosphonates derivative and its Mn(II), Fe(III) and Zn(II) metal complexes as potent antioxidant and antibacterial agents. J Indian Chem Soc 100:101041. https://doi.org/10.1016/j.jics.2023.101041

    Article  CAS  Google Scholar 

  13. Nongpiur CGL, Verma AK, Ghate MM et al (2023) Synthesis, cytotoxicity and antibacterial activities of ruthenium, rhodium and iridium metal complexes containing diazafluorene functionalized ligands. J Mol Struct 1285:135474. https://doi.org/10.1016/j.molstruc.2023.135474

    Article  CAS  Google Scholar 

  14. Fekri R, Salehi M, Asadi A, Kubicki M (2019) Synthesis, characterization, anticancer and antibacterial evaluation of Schiff base ligands derived from hydrazone and their transition metal complexes. Inorganica Chim Acta 484:245–254. https://doi.org/10.1016/j.ica.2018.09.022

    Article  CAS  Google Scholar 

  15. Ejidike IP, Ajibade PA (2015) Synthesis, characterization and biological studies of metal(II) complexes of (3E)-3-[(2-{(E)-[1-(2,4-dihydroxyphenyl) ethylidene]amino}ethyl)imino]-1-phenylbutan-1-one Schiff base. Molecules 20:9788–9802. https://doi.org/10.3390/molecules20069788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Sawaf AK, Azzam MA, Abdou AM, Anouar EH (2018) Synthesis, spectroscopic characterization, DFT and antibacterial studies of newly synthesized cobalt(II, III), nickel(II) and copper(II) complexes with salicylaldehyde N(4)-antipyrinylthiosemicarbazone. Inorganica Chim Acta 483:116–128. https://doi.org/10.1016/j.ica.2018.08.013

    Article  CAS  Google Scholar 

  17. Loubalová I, Zahradníková E, Masaryk L et al (2023) Antibacterial study on nickel and copper dicarboxylate complexes. Inorganica Chim Acta 545:121273. https://doi.org/10.1016/j.ica.2022.121273

    Article  CAS  Google Scholar 

  18. Gutiérrez-Flores J, Pérez-Figueroa SE, del Castillo RM et al (2021) Stability of spherical molecular complexes: a theoretical study of self-assembled M12L24 nanoballs. Struct Chem 32:775–785. https://doi.org/10.1007/s11224-020-01639-0

    Article  CAS  Google Scholar 

  19. Aliabadi A, Motieiyan E, Hosseinabadi F et al (2021) One-pot synthesis, crystallographic characterization, evaluation as in vitro antibacterial and cytotoxic agents of two mercury(II) complexes containing pyridine dicarboxylic acid derivatives. J Mol Struct 1226:129405. https://doi.org/10.1016/J.MOLSTRUC.2020.129405

    Article  CAS  Google Scholar 

  20. Tarika JDD, Dexlin XDD, Arun kumar A, et al (2022) Computational Insights On Charge Transfer and Non-covalent Interactions of Antibacterial Compound 4-dimethylaminopyridinium pyridine-2-carboxylate pentahydrate. J Mol Struct 1256:132525. https://doi.org/10.1016/j.molstruc.2022.132525

    Article  CAS  Google Scholar 

  21. Tamer Ö, Tamer SA, İdil Ö et al (2018) Antimicrobial activities, DNA interactions, spectroscopic (FT-IR and UV-Vis) characterizations, and DFT calculations for pyridine-2-carboxylic acid and its derivates. J Mol Struct 1152:399–408. https://doi.org/10.1016/j.molstruc.2017.09.100

    Article  CAS  Google Scholar 

  22. Yenikaya C, Poyraz M, Sari M et al (2009) Synthesis, characterization and biological evaluation of a novel Cu(II) complex with the mixed ligands 2,6-pyridinedicarboxylic acid and 2-aminopyridine. Polyhedron 28:3526–3532. https://doi.org/10.1016/j.poly.2009.05.079

    Article  CAS  Google Scholar 

  23. Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol S 3:0495

    Google Scholar 

  24. Drewry JA, Gunning PT (2011) Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord Chem Rev 255:459–472. https://doi.org/10.1016/j.ccr.2010.10.018

    Article  CAS  Google Scholar 

  25. Zhang L, Wang XJ, Wang J et al (2009) An improved method of amide synthesis using acyl chlorides. Tetrahedron Lett 50:2964–2966. https://doi.org/10.1016/j.tetlet.2009.03.220

    Article  CAS  Google Scholar 

  26. Askar FW, Abood NK, Jinzeel NA-A, Falih MS (2013) Synthesis and characterization of new 2-amino pyridine derivatives (NJC) adsorption view project synthesis and characterization of new 2-amino pyridine derivatives view project. Irq Nat J Chem 52:453–465

    Google Scholar 

  27. Li S, Wei D, Mao Z et al (2017) Design, synthesis, immunocytochemistry evaluation, and molecular docking investigation of several 4-aminopyridine derivatives as potential neuroprotective agents for treating Parkinson’s disease. Bioorg Chem 73:63–75. https://doi.org/10.1016/j.bioorg.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  28. Velluti F, Acevedo A, Serra G et al (2021) Novel bisthiazole ligand and its copper(II) complex with unusual seven membered ring: Synthesis, characterization, experimental and theoretical study of the effect of ligand flexibility, and antimicrobial activity. Polyhedron 209:115490. https://doi.org/10.1016/J.POLY.2021.115490

    Article  CAS  Google Scholar 

  29. Hoffmann A, Grunzke R, Herres-Pawlis S (2014) Insights into the influence of dispersion correction in the theoretical treatment of guanidine-quinoline copper(I) complexes. J Comput Chem 35:1943–1950. https://doi.org/10.1002/jcc.23706

    Article  CAS  PubMed  Google Scholar 

  30. Sánchez-de-Armas R, Jaber El lala I, Calzado CJ (2023) How complex–surface interactions modulate the spin transition of Fe(ii) SCO complexes supported on metallic surfaces? Phy Chem Chem Phys. https://doi.org/10.1039/d3cp02539j

    Article  Google Scholar 

  31. Mishra A, Kumar R, Khandelwal A et al (2021) Hemi Labile Intramolecular N → Sn Coordination in a Diorganotin (IV) Sulfide [R2Sn(µ-S)]2 (R = 2-phenylazophenyl) Complex: Synthesis, Structure, DFT-NBO and Antibacterial Studies. Polyhedron 205:115302. https://doi.org/10.1016/j.poly.2021.115302

    Article  CAS  Google Scholar 

  32. Harmandar K, Granados-Tavera K, Gezgin M et al (2022) A new sterically hindered asymmetric zinc phthalocyanine as an efficient sensitizer for dye-sensitized solar cells. New J Chem 46:714–725. https://doi.org/10.1039/d1nj04441a

    Article  CAS  Google Scholar 

  33. Prasetyo WE, Kusumaningsih T, Triadmojo B et al (2023) Investigation of the dual role of acyl phloroglucinols as a new hope for antibacterial and anti-SARS-CoV-2 agents employing integrated in vitro and multi-phase in silico approaches. J Biomol Struct Dyn 1–18. https://doi.org/10.1080/07391102.2023.2186712

  34. Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  35. DE Pires V, Blundell TL, Ascher DB (2015) pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng F, Li W, Zhou Y et al (2012) admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J Chem Inf Model 52:3099–3105. https://doi.org/10.1021/ci300367a

    Article  CAS  PubMed  Google Scholar 

  37. Prasetyo WE, Purnomo H, Sadrini M et al (2022) Identification of potential bioactive natural compounds from Indonesian medicinal plants against 3-chymotrypsin-like protease (3CL pro) of SARS-CoV-2: molecular docking, ADME/T, molecular dynamic simulations, and DFT analysis. J Biomol Struct Dyn 41:4467–4484. https://doi.org/10.1080/07391102.2022.2068071

  38. Prasetyo WE, Kusumaningsih T, Wibowo FR (2022) Gaining deeper insights into 2,5-disubstituted furan derivatives as potent α-glucosidase inhibitors and discovery of putative targets associated with diabetes diseases using an integrative computational approach. Struct Chem. https://doi.org/10.1007/s11224-022-01994-0

    Article  Google Scholar 

  39. Larsen C, Lundberg P, Tang S et al (2021) A tool for identifying green solvents for printed electronics. Nat Commun 12:4510. https://doi.org/10.1038/s41467-021-24761-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. https://doi.org/10.1039/b918763b

    Article  CAS  PubMed  Google Scholar 

  41. Anastas PT, Warner JC (2000) Green Chemistry: Theory and Practice. Oxford University Press

  42. Zangaro GAC, Carvalho ACS, Ekawa B et al (2019) Study of the thermal behavior in oxidative and pyrolysis conditions of some transition metals complexes with Lornoxicam as ligand using the techniques: TG-DSC, DSC, HSM and EGA (TG-FTIR and HSM-MS). Thermochim Acta 681:178399. https://doi.org/10.1016/j.tca.2019.178399

    Article  CAS  Google Scholar 

  43. Syaima H, Rahardjo SB, Suryanti V (2020) Facile and rapid synthesis of tetrakis-2-amino-5-methylpyridinecopper(II) chloride pentahydrate. IOP Conf Ser Mater Sci Eng 858:012019. https://doi.org/10.1088/1757-899X/858/1/012019

    Article  CAS  Google Scholar 

  44. Patel AK, Jadeja RN, Patel N et al (2022) Copper(II) hydrazone complexes derived from (Z)-N′-{(2-hydroxynapthalen-1-yl}methylene)acetohydrazide: Synthesis, spectral characterization, electrochemical behaviour, density functional study, in vitro catalytic activity and molecular docking. Results Chem 4:100244. https://doi.org/10.1016/j.rechem.2021.100244

    Article  CAS  Google Scholar 

  45. Ali I, Wani WA, Saleem K (2013) Empirical formulae to molecular structures of metal complexes by molar conductance. Synth React Inorg Met-Org Nano-Met Chem 43:1162–1170. https://doi.org/10.1080/15533174.2012.756898

    Article  CAS  Google Scholar 

  46. Shirvan A, Golchoubian H, Bouwman E (2019) Syntheses and chromotropic behavior of two halo bridged dinuclear copper(II) complexes containing pyridine-based bidentate ligand. J Mol Struct 1195:769–777. https://doi.org/10.1016/j.molstruc.2019.06.034

    Article  CAS  Google Scholar 

  47. Kazimi SGT, Iqbal MS, Mulligan CC et al (2022) Mechanochemical synthesis of six Cu(II) complexes with selected thiols, their physicochemical characterization and interaction with DNA. J Mol Struct 1265:133436. https://doi.org/10.1016/j.molstruc.2022.133436

    Article  CAS  Google Scholar 

  48. Saha S, Jana S, Gupta S et al (2016) Syntheses, structures and biological activities of square planar Ni(II), Cu(II) complexes. Polyhedron 107:183–189. https://doi.org/10.1016/j.poly.2016.01.034

    Article  CAS  Google Scholar 

  49. Shahid N, Sami N, Shakir M, Aatif M (2019) Synthesis, physico-chemical and DNA interactive studies of l-tryptophan based mononuclear Schiff base complexes of first transition metal series. J Saudi Chem Soc 23:315–324. https://doi.org/10.1016/j.jscs.2018.08.004

    Article  CAS  Google Scholar 

  50. Gaber M, El-Wakiel N, Hemeda OM (2019) Cr(III), Mn(II), Co(II), Ni(II) and Cu(II) complexes of 7-((1H-benzo[d]imidazol-2-yl)diazenyl)-5-nitroquinolin-8-ol.synthesis, thermal, spectral, electrical measurements, molecular modeling and biological activity. J Mol Struct 1180:318–329. https://doi.org/10.1016/j.molstruc.2018.12.006

    Article  CAS  Google Scholar 

  51. Hegde PL, Bhat SS, Revankar VK et al (2022) Syntheses, structural characterization and evaluation of the anti-tubercular activity of copper (II) complexes containing 3-methoxysalicylaldehyde-4-methylthiosemicarbazone. J Mol Struct 1257:132589. https://doi.org/10.1016/j.molstruc.2022.132589

    Article  CAS  Google Scholar 

  52. Justi M, de Freitas MP, Silla JM et al (2021) Molecular structure features and fast identification of chemical properties of metal carboxylate complexes by FTIR and partial least square regression. J Mol Struct 1237:130405. https://doi.org/10.1016/j.molstruc.2021.130405

    Article  CAS  Google Scholar 

  53. Devi P, Singh K, Kumar B, Singh JK (2023) Synthesis, spectroscopic, antimicrobial and in vitro anticancer activity of Co+2, Ni+2, Cu+2 and Zn+2 metal complexes with novel Schiff base. Inorg Chem Commun 152:110674. https://doi.org/10.1016/j.inoche.2023.110674

    Article  CAS  Google Scholar 

  54. Spaeth AD, Gagnon NL, Dhar D et al (2017) Determination of the Cu(III)–OH Bond Distance by Resonance Raman Spectroscopy Using a Normalized Version of Badger’s Rule. J Am Chem Soc 139:4477–4485. https://doi.org/10.1021/jacs.7b00210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sundberg MR, Kivekäs R, Huovilainen P, Uggla R (2001) Effect of hydrogen bonding on the coordination: Part 2. Semi-coordination in trans-di(salicylato)bis(1,3-diaminopropane-N, N’)copper(II). Inorganica Chim Acta 324:212–217. https://doi.org/10.1016/S0020-1693(01)00605-3

    Article  CAS  Google Scholar 

  56. Valach F, Grobelny R, Glowiak T et al (2010) Structural study of semi-coordination in a seven-coordinate copper(II) complex: Distortion isomerism of [Cu(CH3COO)2(4-aminopyridine)2(H2O)]. J Coord Chem 63:1645–1651. https://doi.org/10.1080/00958972.2010.489204

    Article  CAS  Google Scholar 

  57. Hussain A, Khan MU, Ibrahim M et al (2020) Structural parameters, electronic, linear and nonlinear optical exploration of thiopyrimidine derivatives: A comparison between DFT/TDDFT and experimental study. J Mol Struct 1201:127183. https://doi.org/10.1016/j.molstruc.2019.127183

    Article  CAS  Google Scholar 

  58. Hrichi H, Elkanzi NAA, Ali AM, Abdou A (2023) A novel colorimetric chemosensor based on 2-[(carbamothioylhydrazono) methyl]phenyl 4-methylbenzenesulfonate (CHMPMBS) for the detection of Cu(II) in aqueous medium. Res Chem Intermed 49:2257–2276. https://doi.org/10.1007/s11164-022-04905-4

    Article  CAS  Google Scholar 

  59. Al-Gaber MAI, Abd El-Lateef HM, Khalaf MM et al (2023) Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation. Materials 16. https://doi.org/10.3390/ma16030897

  60. Arafath MDA, Adam F, Ahamed MBK et al (2023) Ni(II), Pd(II) and Pt(II) complexes with SNO-group thiosemicarbazone and DMSO: Synthesis, characterization, DFT, molecular docking and cytotoxicity. J Mol Struct 1278:134887. https://doi.org/10.1016/j.molstruc.2022.134887

    Article  CAS  Google Scholar 

  61. Hassan AU, Sumrra SH, Imran M, Chohan ZH (2022) New 3d multifunctional metal chelates of sulfonamide: Spectral, vibrational, molecular modeling, DFT, medicinal and in silico studies. J Mol Struct 1254:132305. https://doi.org/10.1016/J.molstruc.2021.132305

    Article  CAS  Google Scholar 

  62. Noreen S, Sumrra SH (2022) Correlating the charge transfer efficiency of metallic sulfa-isatins to design efficient NLO materials with better drug designs. Biometals 35:519–548. https://doi.org/10.1007/s10534-022-00385-6

    Article  CAS  PubMed  Google Scholar 

  63. Rani S, Sumrra SH, Chohan ZH (2017) Metal based sulfanilamides: A note on their synthesis, spectral characterization, and antimicrobial activity. Russ J Gen Chem 87:1834–1842. https://doi.org/10.1134/S107036321708031X

    Article  CAS  Google Scholar 

  64. Hossain MS, Khushy KA, Latif MA et al (2022) Co(II), Ni(II), and Cu(II) Complexes Containing Isatin-Based Schiff Base Ligand: Synthesis, Physicochemical Characterization, DFT Calculations, Antibacterial Activity, and Molecular Docking Analysis. Russ J Gen Chem 92:2723–2733. https://doi.org/10.1134/S1070363222120222

    Article  CAS  Google Scholar 

  65. Murukan B, Mohanan K (2007) Synthesis, characterization and antibacterial properties of some trivalent metal complexes with [(2-hydroxy-1-naphthaldehyde)-3-isatin]-bishydrazone. J Enzyme Inhib Med Chem 22:65–70. https://doi.org/10.1080/14756360601027373

    Article  CAS  PubMed  Google Scholar 

  66. Fousiamol MM, Sithambaresan M, Damodaran KK, Kurup MRP (2020) Syntheses, spectral aspects and biological studies of bromide and azide bridged box dimer copper(II) complexes of an NNO donor aroylhydrazone. Inorganica Chim Acta 501:119301. https://doi.org/10.1016/J.ICA.2019.119301

    Article  CAS  Google Scholar 

  67. Srivastva AN, Singh NP, Shriwastaw CK (2016) In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation. Arab J Chem 9:48–61. https://doi.org/10.1016/j.arabjc.2014.10.004

    Article  CAS  Google Scholar 

  68. Shaaban S, Abdou A, Alhamzani AG et al (2023) Synthesis and in silico investigation of organoselenium-clubbed schiff bases as potential Mpro inhibitors for the SARS-CoV-2 replication. Life 13. https://doi.org/10.3390/life13040912

  69. Damena T, Zeleke D, Desalegn T et al (2022) Synthesis, characterization, and biological activities of novel vanadium(IV) and cobalt(II) complexes. ACS Omega 7:4389–4404. https://doi.org/10.1021/acsomega.1c06205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. El-Sayed NNE, Almaneai NM, Ben Bacha A et al (2022) Biological Evaluation, Molecular Docking Analyses, and ADME Profiling of Certain New Quinazolinones as Anti-colorectal Agents. ACS Omega 7:18443–18458. https://doi.org/10.1021/acsomega.2c00812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Daina A, Zoete V (2016) A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11:1117–1121. https://doi.org/10.1002/cmdc.201600182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Krupka M, Rowlett VW, Morado D et al (2017) Escherichia coli FtsA forms lipid-bound minirings that antagonize lateral interactions between FtsZ protofilaments. Nat Commun 8:15957. https://doi.org/10.1038/ncomms15957

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nag D, Dastidar DG, Chakrabarti G (2021) Natural flavonoid morin showed anti-bacterial activity against Vibrio cholera after binding with cell division protein FtsA near ATP binding site. Biochim Biophys Acta Gen Subj 1865:129931. https://doi.org/10.1016/j.bbagen.2021.129931

    Article  CAS  PubMed  Google Scholar 

  74. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337–356

    Article  CAS  PubMed  Google Scholar 

  75. Alghuwainem YAA, El-Lateef HMA, Khalaf MM et al (2022) Synthesis, DFT, biological and molecular docking analysis of novel manganese (II), Iron (III), Cobalt (II), Nickel (II), and Copper (II) Chelate Complexes Ligated by 1-(4-Nitrophenylazo)-2-naphthol. Int J Mol Sci 23:15614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

S.B.R express gratitude to the Institute for Research and Community Service of Sebelas Maret University for research funding support with grant number 228/UN27.22/PT.01.03/2023.

Author information

Authors and Affiliations

Authors

Contributions

Husna Syaima: Conceptualization, Investigation, Methodology, Formal analysis, Writing – original draft. Wahyu Eko Prasetyo: Investigation, Methodology, Formal analysis, Writing – original draft. Sentot Budi Rahardjo: Project administration, Funding acquisition, and Supervision. Venty Suryanti: Supervision.

Corresponding author

Correspondence to Sentot Budi Rahardjo.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syaima, H., Prasetyo, W.E., Rahardjo, S.B. et al. Semi-coordination Cu–O bond on a copper complex featuring O,O-donor ligand as potential antibacterial agent: green synthesis, characterization, DFT, in-silico ADMET profiling and molecular docking studies. Struct Chem 35, 721–737 (2024). https://doi.org/10.1007/s11224-023-02224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02224-x

Keywords

Navigation