Skip to main content
Log in

Synthesis of 3,4-dihydro-1,3,5-triazin-2(1H)-one derivatives by recycling 2H-1,3,5-oxadiazine-2,4(3H)-diimines: their spectral characteristics and molecular structure

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

1,3,5-Triazine derivatives are an important class of six-membered heterocyclic compounds of great interest in medicine, pharmacy, agriculture, polymer, electronics, and other industries. In this paper, we report on the synthesis of 1,3,5-triazine derivatives by the 1,3,5-oxadiazine ring transformation. The reaction was carried out by refluxing the starting 1,3,5-oxadiazines in a methanol-alkaline solution. The reaction products were obtained in 82–88% yields. Their structure was confirmed by 1H and 13C NMR, IR spectroscopy, and mass spectrometry data. X-ray diffraction studies were carried out for one of the representatives of some 1,3,5-oxadiazines and 1,3,5-triazines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

Availability of data and material

The online version contains supplementary material and data available at https://doi.org/10.1007/s11224-023-02184-2.

Code availability

Not applicable.

References

  1. Sonawane RP, Sikervar V, Sasmal S (2022) In: Black DStC, Cossy J, Stevens ChV (eds) 1,3,5-Triazines. Comprehensive Heterocyclic Chemistry, 4th edn. Elsevier, 9:181–283. https://doi.org/10.1016/B978-0-12-818655-8.00018-4

  2. Pourebrahimi S, Pirooz M (2022) Clean Chem Eng 2:100012. https://doi.org/10.1016/j.clce.2022.100012

    Article  Google Scholar 

  3. Mohamed MG, EL-Mahdy AFM, Kotpa MG, Kuo S-W (2022) Mater Adv 3:707–733. https://doi.org/10.1039/D1MA00771H

    Article  CAS  Google Scholar 

  4. Liao L, Li M, Yin Y, Chen J, Zhong Q, Du R, Liu S, He Y, Fu W, Zeng F (2023) ACS Omega 8:4527–4542. https://doi.org/10.1021/acsomega.2c06961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Yan S, Zhang L, Mai Y, Li W, Pang H (2021) Macromol Res 29:462–469. https://doi.org/10.1007/s13233-021-9060-1

    Article  CAS  Google Scholar 

  6. Hanumantha Rao M, Ghule VD, Muralidharan K (2021) J Chem Sci 133:13. https://doi.org/10.1007/s12039-020-01865-3

    Article  CAS  Google Scholar 

  7. Li Y, Lai C, Liu Sh, Fu Y, Qin L, Xu M, Ma D, Zhou X, Xu F, Liu H, Li L, Sun Q, Wang N (2023) J Mater Chem A 11:2070–2091. https://doi.org/10.1039/D2TA08840A

    Article  CAS  Google Scholar 

  8. Dobrikov GM, Nikolova Y, Slavchev I, Dangalov M, Deneva V, Antonov L, Vassilev NG (2023) Molecules 28:1248. https://doi.org/10.3390/molecules28031248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yi F, Yang Q, Li X, Yuan Y, Cao H, Liu K, Yan H (2023) J Solid State Chem 318:123769. https://doi.org/10.1016/j.jssc.2022.123769

    Article  CAS  Google Scholar 

  10. Al-Jumaili MHA, Akkurt N, Torun L (2021) Monatsh Chem 152:551–558. https://doi.org/10.1007/s00706-021-02768-w

    Article  CAS  Google Scholar 

  11. Al-Jumaili MHA, Ocak H, Torun L (2022) Monatsh Chem 153:939–947. https://doi.org/10.1007/s00706-022-02969-x

    Article  CAS  Google Scholar 

  12. Vathanaruba M, Raja SJ, Princess R, Tharmaraj P (2022) J Mol Struct 1253:132275. https://doi.org/10.1016/j.molstruc.2021.132275

    Article  CAS  Google Scholar 

  13. Güven GB, Çınarlı M, Şaş EB, İdil Ö, Yağcı NK (2021) J Mol Struct 1234:130187. https://doi.org/10.1016/j.molstruc.2021.130187

    Article  CAS  Google Scholar 

  14. Kiymaz K, Uysal S (2023) J Mol Struct 1271:134029. https://doi.org/10.1016/j.molstruc.2022.134029

    Article  CAS  Google Scholar 

  15. Soliman SM, Haukka M, Al-Rasheed HH, El-Faham A (2020) J Mol Struct 1219:128584. https://doi.org/10.1016/j.molstruc.2020.128584

    Article  CAS  Google Scholar 

  16. Soliman SM, Elsilk SE, El-Faham A (2020) Inorg Chim Acta 508:119627. https://doi.org/10.1016/j.ica.2020.119627

    Article  CAS  Google Scholar 

  17. Li HSH, Wang LY, Wang Y, Bai FY, Xing YH, Shi ZH (2022) Inorg Chim Acta 542:121116. https://doi.org/10.1016/j.ica.2022.121116

    Article  CAS  Google Scholar 

  18. Refaat HM, Alotaibi AAM, Dege N, El-Faham A, Soliman SM (2022) Inorg Chim Acta 543:121196. https://doi.org/10.1016/j.ica.2022.121196

    Article  CAS  Google Scholar 

  19. Lasri J, Al-Rasheed HH, El-Faham A, Haukka M, Abutaha N, Soliman SM (2020) Polyhedron 187:114665. https://doi.org/10.1016/j.poly.2020.114665

    Article  CAS  Google Scholar 

  20. Soliman SM, Lasri J, Haukka M, Elmarghany A, Al-Majid AM, El-Faham A, Barakat A (2020) J Mol Struct 1217:128463. https://doi.org/10.1016/j.molstruc.2020.128463

    Article  CAS  Google Scholar 

  21. Soliman SM, Elsilk SE, El-Faham A (2020) Inorg Chim Acta 510:119753. https://doi.org/10.1016/j.ica.2020.119753

    Article  CAS  Google Scholar 

  22. Chen Zh, Duan H, Gai Y, Xie W, Deng W, Jiang F (2021) Inorg Chim Acta 522:120385. https://doi.org/10.1016/j.ica.2021.120385

    Article  CAS  Google Scholar 

  23. Dahlous KA, Soliman SM, El-Faham A, Massoud RA (2022) Crystals 12:1786. https://doi.org/10.3390/cryst12121786

    Article  CAS  Google Scholar 

  24. Makowska A, Sączewski F, Bednarski PJ, Gdaniec M, Balewski Ł, Warmbier M, Kornicka A (2022) Molecules 27:7155. https://doi.org/10.3390/molecules27217155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dahlous KA, Alotaibi AAM, Dege N, El-Faham A, Soliman SM, Refaat HM (2022) Crystals 12:861. https://doi.org/10.3390/cryst12060861

    Article  CAS  Google Scholar 

  26. Refaat HM, Alotaibi AAM, Dege N, El-Faham A, Soliman SM (2022) Molecules 27:3625. https://doi.org/10.3390/molecules27113625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Refaat HM, Alotaibi AAM, Dege N, El-Faham A, Soliman SM (2022) Crystals 12:741. https://doi.org/10.3390/cryst12050741

    Article  CAS  Google Scholar 

  28. Bin Shahari MS, Dolzhenko AV (2022) Eur J Med Chem 241:114645. https://doi.org/10.1016/j.ejmech.2022.114645

    Article  CAS  Google Scholar 

  29. Singh S, Mandal MK, Masih A, Saha A, Ghosh SK, Bhat HR, Singh UP (2021) Arch Pharm 354:e2000363. https://doi.org/10.1002/ardp.202000363

    Article  CAS  Google Scholar 

  30. Maliszewski D, Drozdowska D (2022) Pharmaceuticals 15:221. https://doi.org/10.3390/ph15020221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zou J-P, Zhang Z, Lv J-Y, Zhang X-Q, Zhang Z-Y, Han S-T, Liu Y-W, Liu W-W, Ji J, Shi D-H (2023) Tetrahedron 134:133293. https://doi.org/10.1016/j.tet.2023.133293

    Article  CAS  Google Scholar 

  32. Cascioferro S, Parrino B, Spano V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G (2017) Eur J Med Chem 142:523–549. https://doi.org/10.1016/j.ejmech.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  33. Ali W, Garbo S, Kincses A, Nové M, Spengler G, Di Bello E, Honkisz-Orzechowska E, Karcz T, Szymańska E, Żesławska E, Starek M, Dąbrowska M, Nitek W, Kucwaj-Brysz K, Pyka P, Fioravanti R, Jacob C, Battistelli C, Zwergel C, Handzlik J (2022) Eur J Med Chem 243:114761. https://doi.org/10.1016/j.ejmech.2022.114761

    Article  CAS  PubMed  Google Scholar 

  34. Gomathishankkar K, Joseph Yesudian DM, Thiraviam C, Alexander RA (2022) Struct Chem 33:2083–2113. https://doi.org/10.1007/s11224-022-01968-2

    Article  CAS  Google Scholar 

  35. Sun X, Zhang B, Luo L, Yang Y, He B, Zhang Q, Wang L, Xu S, Zheng P, Zhu W (2022) Bioorg Chem 129:106157. https://doi.org/10.1016/j.bioorg.2022.106157

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Qu Z, Wu J, Yao S, Zhang Q, Zhang T, Mo L, Yao Q, Xu Y, Chen R (2021) Eur J Med Chem 214:113188. https://doi.org/10.1016/j.ejmech.2021.113188

    Article  CAS  PubMed  Google Scholar 

  37. Oggu S, Mallavarapu BD, Natarajan P, Malempati S, Gundla R (2022) J Mol Struct 1266:133412. https://doi.org/10.1016/j.molstruc.2022.133412

    Article  CAS  Google Scholar 

  38. Mehmood Y, Anwar F, Saleem U, Hira S, Ahmad B, Bashir M, Imtiaz MT, Najm S, Ismail T (2021) Life Sci 285:119994. https://doi.org/10.1016/j.lfs.2021.119994

    Article  CAS  PubMed  Google Scholar 

  39. Wu TT, Guo QQ, Chen ZL, Wang LL, Du Y, Chen R, Mao YH, Yang SG, Huang J, Wang JT, Wang L, Tang L, Zhang JQ (2020) Eur J Med Chem 204:112637. https://doi.org/10.1016/j.ejmech.2020.112637

    Article  CAS  PubMed  Google Scholar 

  40. De Pascale M, Bissegger L, Tarantelli C, Beaufils F, Prescimone A, Mohamed Seid Hedad H, Kayali O, Orbegozo C, Raguž L, Schaefer T, Hebeisen P, Bertoni F, Wymann MP, Borsari C (2023) Eur J Med Chem 248:115038. https://doi.org/10.1016/j.ejmech.2022.115038

    Article  CAS  PubMed  Google Scholar 

  41. Ibrahim MT, Lee J, Tao P (2022) Mol Divers. https://doi.org/10.1007/s11030-022-10519-0(inpress)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Panda SS, Thomas E, Pham AM (2022) Reactions 3:516–524. https://doi.org/10.3390/reactions3040034

    Article  CAS  Google Scholar 

  43. Tomorowicz Ł, Żołnowska B, Szafrański K, Chojnacki J, Konopiński R, Grzybowska EA, Sławiński J, Kawiak A (2022) Int J Mol Sci 23:7178. https://doi.org/10.3390/ijms23137178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park S, Ahn Y, Kim Y, Roh EJ, Lee Y, Han C, Yoo HM, Yu J (2022) Molecules 27:4016. https://doi.org/10.3390/molecules27134016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shawish I, Barakat A, Aldalbahi A, Alshaer W, Daoud F, Alqudah DA, Al Zoubi M, Hatmal MM, Nafie MS, Haukka M, Sharma A, de la Torre BG, Albericio F, El-Faham A (2022) Pharmaceutics 14:1558. https://doi.org/10.3390/pharmaceutics14081558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang TY, Li CS, Cui MY, Bai XQ, Chen JH, Song ZW, Feng B, Liu XK (2021) Mol Divers 25:861–876. https://doi.org/10.1007/s11030-020-10071-9

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Inoyama D, Russo R, Li SG, Jadhav R, Stratton TP, Mittal N, Bilotta JA, Singleton E, Kim T, Paget SD, Pottorf RS, Ahn YM, Davila-Pagan A, Kandasamy S, Grady C, Hussain S, Soteropoulos P, Zimmerman MD, Ho HP, Park S, Dartois V, Ekins S, Connell N, Kumar P, Freundlich JS (2020) Cell Chem Biol 27:172-185.e11. https://doi.org/10.1016/j.chembiol.2019.10.010

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Long S, Rakesh KP, Zha GF (2020) Eur J Med Chem 185:111804. https://doi.org/10.1016/j.ejmech.2019.111804

    Article  CAS  PubMed  Google Scholar 

  49. Mekheimer RA, Abuo-Rahma GEDA, Abd-Elmonem M, Yahia R, Hisham M, Hayallah AM, Mostafa SM, Abo-Elsoud FA, Sadek KU (2022) J Mol Struct 1267:133615. https://doi.org/10.1016/j.molstruc.2022.133615

    Article  CAS  Google Scholar 

  50. Sahu S, Ghosh SK, Kalita JM, Ginjupalli MC, Raj KK (2020) Eur J Pharm Sci 144:105208. https://doi.org/10.1016/j.ejps.2019.105208

    Article  CAS  PubMed  Google Scholar 

  51. Patil V, Noonikara-Poyil A, Joshi SD, Patil SA, Patil SA, Lewis AM, Bugarin A (2020) J Mol Struct 1220:128687. https://doi.org/10.1016/j.molstruc.2020.128687

    Article  CAS  Google Scholar 

  52. Utreja D, Kaur J, Kaur K, Jain P (2020) Mini Rev Org Chem 17:991–1041. https://doi.org/10.2174/1570193X17666200129094032

    Article  CAS  Google Scholar 

  53. de Souza-Balbinot G, Mendes Nobre do Espírito Santo C, Leitune VCB, Visioli F, Duarte-Soares RM, Sauro S, Collares FM (2022) Polymers 14:4482. https://doi.org/10.3390/polym14214482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie F, Hao Y, Liu J, Bao J, Ni T, Liu Y, Chi X, Wang T, Yu S, Jin Y, Li L, Zhang D, Yan L (2022) Pharmaceutics 14:2334. https://doi.org/10.3390/pharmaceutics14112334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grosicki M, Adami M, Micheloni C, Głuch-Lutwin M, Siwek A, Latacz G, Łażewska D, Więcek M, Reiner-Link D, Stark H, Chlopicki S, Kieć-Kononowicz K (2021) Eur J Pharmacol 890:173611. https://doi.org/10.1016/j.ejphar.2020.173611

    Article  CAS  PubMed  Google Scholar 

  56. Singh P, Kaur S, Kumari P, Kaur B, Kaur M, Singh G, Bhatti R, Bhatti M (2018) J Med Chem 61:7929–7941. https://doi.org/10.1021/acs.jmedchem.8b00922

    Article  CAS  PubMed  Google Scholar 

  57. Wu WL, Wen ZY, Qian JJ, Zou JP, Liu ShM, Yang Sh, Qin T, Yang Q, Liu YH, Liu WW, Wang J, Shi LY, Shi DH (2022) J Mol Struct 1257:132498. https://doi.org/10.1016/j.molstruc.2022.132498

    Article  CAS  Google Scholar 

  58. Su JB, Wu WL, Dong CE, Yang S, Feng YY, Qin T, Chen KQ, Qian JJ, Zou JP, Liu YH, Liu SM, Liu WW, Shi DH (2023) J Mol Struct 1274:134391. https://doi.org/10.1016/j.molstruc.2022.134391

    Article  CAS  Google Scholar 

  59. Xiao M, Zhu M, Wu S, Ma L, Qi L, Ha S, Xiong S, Chen M, Chen D, Luo G, Xiang H (2023) Bioorg Chem 130:106263. https://doi.org/10.1016/j.bioorg.2022.106263

    Article  CAS  PubMed  Google Scholar 

  60. Teng Y, Lu X, Xiao M, Li Z, Zou Y, Ren S, Cheng Y, Luo G, Xiang H (2020) Eur J Med Chem 199:112339. https://doi.org/10.1016/j.ejmech.2020.112339

    Article  CAS  PubMed  Google Scholar 

  61. Zain-Alabdeen AI, El-Moselhy TF, Sharafeldin N, Angeli A, Supuran CT, El-Hamamsy MH (2022) Sci Rep 12:16756. https://doi.org/10.1038/s41598-022-21024-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Łażewska D, Więcek M, Satała G, Chałupnik P, Żesławska E, Honkisz-Orzechowska E, Tarasek M, Latacz G, Nitek W, Szymańska E, Handzlik J (2023) Molecules 28:1108. https://doi.org/10.3390/molecules28031108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kułaga D, Drabczyk AK, Satała G, Latacz G, Boguszewska-Czubara A, Plażuk D, Jaśkowska J (2022) Int J Mol Sci 23:13308. https://doi.org/10.3390/ijms232113308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khatib I, Rychter P, Falfushynska H (2022) J Xenobiot 12:236–265. https://doi.org/10.3390/jox12030018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kumar N, Rani P, Agarwal S, Singh DV (2022) J Mol Model 28:77. https://doi.org/10.1007/s00894-021-05006-6

    Article  CAS  PubMed  Google Scholar 

  66. Pérez-Villanueva ME, Masís-Mora M, Araya-Valverde E, Rodríguez-Rodríguez CE (2022) Biocatal Agric Biotechnol 44:102452. https://doi.org/10.1016/j.bcab.2022.102452

    Article  CAS  Google Scholar 

  67. Mondal J, Sivaramakrishna A (2022) Top Curr Chem (Z) 380:34. https://doi.org/10.1007/s41061-022-00385-7

    Article  CAS  Google Scholar 

  68. Zhang F-G, Chen Zh, Tang X, Ma J-A (2021) Chem Rev 121:14555–14593. https://doi.org/10.1021/acs.chemrev.1c00611

    Article  CAS  PubMed  Google Scholar 

  69. Pokotylo IO, Zadorozhnii PV, Kiselev VV, Kharchenko AV (2023) Biointerface Res Appl Chem 13:379. https://doi.org/10.33263/BRIAC134.379

  70. Zadorozhnii PV, Kiselev VV, Kharchenko AV (2022) In: Black DStC, Cossy J, Stevens ChV (eds) 1,3,5-Oxadiazines and 1,3,5-Thiadiazines. Comprehensive Heterocyclic Chemistry, 4th edn. Elsevier, 9: 456–506. https://doi.org/10.1016/B978-0-12-818655-8.00105-0

  71. Gao H, Shreeve JM (2015) Angew Chem Int Ed 54:6335–6338. https://doi.org/10.1002/anie.201501973

    Article  CAS  Google Scholar 

  72. Kumar TVM, Rao GVP, Reddy VP, Rao PH (2010) Ind J Chem B 49:603–605

    Google Scholar 

  73. Zadorozhnii PV, Kiselev VV, Kharchenko AV (2015) In: Novikov VP (ed) Synthesis of nitrogen-containing heterocycles based on N-(isothiocyanatoalkyl)carboxamides. Modern Directions in Chemistry, Biology, Pharmacy and Biotechnology. Lviv Polytechnic Publishing House: Lviv, 212–219

  74. L’abbe G, Dekerk J-P, Declercq JP, Germain G, Van Meerssche M (1979) Tetrahedron Lett 20:3213–3216. https://doi.org/10.1016/S0040-4039(01)95365-1

    Article  Google Scholar 

  75. Huang H, Zhu X, He G, Liu Q, Fan J, Zhu H (2015) Org Lett 17:2510–2513. https://doi.org/10.1021/acs.orglett.5b01045

    Article  CAS  PubMed  Google Scholar 

  76. Bürgi H-B, Dunitz JD (1994) In: Structure Correlation. VCH, Weinheim, 2: 741–784

  77. Mantina M, Chamberlin AC, Valero R, Cramer CJ, Truhlar DG (2009) J Phys Chem A 113:5806–5812. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zadorozhnii PV, Kiselev VV, Hrek OO, Kharchenko AV, Okhtina OV (2022) Struct Chem 33:2127–2132. https://doi.org/10.1007/s11224-022-02024-9

    Article  CAS  Google Scholar 

  79. Zadorozhnii PV, Kiselev VV, Pokotylo IO, Kharchenko AV (2017) Heterocycl Commun 23:369–374. https://doi.org/10.1515/hc-2017-0083

    Article  CAS  Google Scholar 

  80. Onys’ko PP, Sinitsa AA, Pirozhenko VV, Chernega AN (2002) Heteroat Chem 13:22–26. https://doi.org/10.1002/hc.1102

    Article  CAS  Google Scholar 

  81. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  82. Sheldrick GM (2015) Acta Crystallogr A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sheldrick GM (2008) Acta Crystallogr A Found Adv 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

Download references

Funding

The work has been financially supported by the Krzysztof Skubiszewski Foundation (Warsaw, Poland), program “Urgent Aid for the Preservation of the Research Capabilities of Ukraine” and funded project “Synthesis and biological activity of nitrogen-containing heterocyclic compounds based on N-(isothiocyanatoalkyl)carboxamides”, grant # 0000000342.

Author information

Authors and Affiliations

Authors

Contributions

I.O.P.: methodology, formal analysis; P.V.Z.: conceptualization, methodology, writing-original draft, formal analysis, investigation, visualization, project administration; V.V.K.: validation, resources, writing-review and editing; A.V.K.: validation, supervision, writing-review and editing.

Corresponding author

Correspondence to Pavlo V. Zadorozhnii.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2128 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokotylo, I.O., Zadorozhnii, P.V., Kiselev, V.V. et al. Synthesis of 3,4-dihydro-1,3,5-triazin-2(1H)-one derivatives by recycling 2H-1,3,5-oxadiazine-2,4(3H)-diimines: their spectral characteristics and molecular structure. Struct Chem 34, 2273–2279 (2023). https://doi.org/10.1007/s11224-023-02184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02184-2

Keywords

Navigation