Skip to main content
Log in

Paradigms and paradoxes: systematics in the study of the simplest sulfenic acids and sulfoxides, and a comparison between sulfur–oxygen and nitrogen–oxygen bonds

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Some particularities in the bonding of simple sulfenic acids and their sulfoxide isomers are explored using accurate theoretical methods. Some unexpected results are described using thermochemical results on diverse nitrogen- and/or oxygen-containing functionalities such as amino, nitro, nitroso, and nitrite derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. McGrath A, Garrett GE, Valgimigli L, Pratt SA (2010) J Am Chem Soc 132:16759–16761

    Article  CAS  PubMed  Google Scholar 

  2. Winterbourn CC, Hampton MB (2008) Free Rad Biol Med 45:549–561

    Article  CAS  PubMed  Google Scholar 

  3. Gupta V, Carroll KS (2014) Biochim Biophys Acta 1840:847–845

    Article  CAS  PubMed  Google Scholar 

  4. Saurin AT, Neubert H, Brennan JP, Eaton P (2004) Proc Nat Acad Sci 101:17982–17987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walsh DJ, Livinghouse T, Durling GM, Chase-Bayless Y, Arnold AD, Stewart PS (2020) ACS Omega 5:6010–6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Senatore L, Ciuffarin E, Fava A (1970) J Am Chem Soc 92:3035–3039

    Article  CAS  Google Scholar 

  7. Goodman L, Kharasch N (1955) J Am Chem Soc 77:6541–6546

    Article  CAS  Google Scholar 

  8. Kupwade RV (2019) J Chem Revs 1:99–113

    Google Scholar 

  9. Drabowicz K, Mikolajczyk M (1982) Org Prepar Proced Int 14:45–89

    Article  CAS  Google Scholar 

  10. Shiri L, Kazemi M (2017) Res Chem Intermed 43:6007–6041

    Article  CAS  Google Scholar 

  11. Iraqi M, Schwarz H (1994) Chem Phys Lett 221:359–362

    Article  CAS  Google Scholar 

  12. Denis P (2008) Mol Phys 106:2557–2567

    Article  CAS  Google Scholar 

  13. Grant DJ, Dixon DA, Francisco JS, Feller D, Peterson KA (2009) J Phys Chem A 113:11343–11353

    Article  CAS  PubMed  Google Scholar 

  14. Kumar MR, Farmer PJ (2018) Redox Biol 14:485–491

    Article  CAS  PubMed  Google Scholar 

  15. Góbi S, Csonka IP, Bazsó G, Tarczay G (2021) ACS Earth Space Chem 5:1180–1195

    Article  Google Scholar 

  16. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) J Phys Chem Ref Data 11(Suppl):2

    Google Scholar 

  17. Ventura ON, Segovia M, Vega-Teijido M, Katz A, Kieninger M, Tasinato N, Salta Z (2022) J Phys Chem A 126:6091–6109

    Article  CAS  PubMed  Google Scholar 

  18. Pedley JB (1994) Thermochemical data and structures of organic compounds. TRC data series, vol 1, TRC, College Station

  19. Alessandrini S, Barone V, Puzzarini C (2020) J Chem Theory Comput 16:988–1006

    Article  CAS  PubMed  Google Scholar 

  20. Barone V, Lupi J, Salta Z, Tasinato N (2021) J Chem Theory Comput 17:4913–4928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ventura ON, Kieninger M, Katz A, Vega-Teijido M, Segovia ME, Irving K (2021) Int J Quantum Chem 121:e26745

    Article  CAS  Google Scholar 

  22. Karton A (2022) Annu Rep Comput Chem 18:123–166

    Article  Google Scholar 

  23. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843–1856

    Article  CAS  Google Scholar 

  24. Parthiban S, Martin JML (2001) J Chem Phys 114:6014–6029

    Article  CAS  Google Scholar 

  25. Barnes EC, Petersson GA, Montgomery JA Jr, Frisch MJ, Martin JML (2009) J Chem Theor Comput 5:2687–2693

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H et al (2016) Gaussian, Inc., Wallingford CT

  27. Da Silva G, Bozzelli JW, Sebbar N, Bockhorn H (2006) Chem Phys Chem 7:1119–1126

    Article  PubMed  Google Scholar 

  28. Chase MW Jr (1998) J Phys Chem Ref Data Monograph 9:1–1951

  29. Ruscic B, Pinzon RE, Morton ML, von Laszewski G, Bittner S, Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) J Phys Chem A 108:9979–9997

    Article  CAS  Google Scholar 

  30. Ruscic B, Pinzon RE, von Laszewski G, Kodeboyina D, Burcat A, Leahy D, Montoya D, Wagner AF (2005) J Phys Conf Ser 16:561–570

    Article  CAS  Google Scholar 

  31. Ruscic B, Bross DH (2021) Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois  available at ATcT.anl.gov

  32. Wiberg KB, Crocker LS, Morgan KM (1991) J Am Chem Soc 113:3447–3450

    Article  CAS  Google Scholar 

  33. Hunter EPL, Lias SG (1998) J Phys Chem Ref Data 27:413–656

    Article  CAS  Google Scholar 

  34. Acree WE Jr, Pilcher G, Ribeiro da Silva MDMC (2005). J Phys Chem Ref Data 34:553–572

  35. Batt L, Robinson GN (1982) Thermochemistry of nitro compounds, amines and nitroso compounds in The chemistry of functional groups, supplement F, chemistry of amino, nitroso, and nitro compounds and their derivatives. (Ed. S. Patai), John Wiley & Sons, Hoboken. 1035–1083

  36. Tapuhi Y, Grushka E (1982) Detection and determination of nitro and nitroso compounds, The chemistry of functional groups, supplement F, chemistry of amino, nitroso, and nitro compounds and their derivatives. (Ed, S. Patai), John Wiley & Sons, Hoboken. 910–926

Download references

Acknowledgements

ZS and NT acknowledge SMART@SNS Laboratory (http://smart.sns.it) for providing high-performance computer facilities. ONV gratefully acknowledges the continuous support for making this study provided by Pedeciba, CSIC (UdelaR), and ANII. JFL thanks the science reference librarians at his university (UMBC) for continued support of his scientific research.

Author information

Authors and Affiliations

Authors

Contributions

Z. S. and O. N. V., performing the calculations and final writing of the paper; N. T., supervision and critical appraisal of the paper; J. F. L., general conceptualization of the project and participation in the writing. All authors have contributed equally to writing and reviewing the manuscript.

Corresponding author

Correspondence to Joel Fredric Liebman.

Ethics declarations

Ethical approval

We did not perform any experiments when preparing this article, so neither ethics review nor informed consent was necessary.

Consent to participate

All authors agreed with participation in research and publication of the results.

Consent for publication

All authors have approved the manuscript before submission, including the names and order of authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salta, Z., Tasinato, N., Ventura, O.N. et al. Paradigms and paradoxes: systematics in the study of the simplest sulfenic acids and sulfoxides, and a comparison between sulfur–oxygen and nitrogen–oxygen bonds. Struct Chem 34, 723–727 (2023). https://doi.org/10.1007/s11224-023-02134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02134-y

Keywords

Navigation