Skip to main content
Log in

Metal free activation of water and ammonia by neutral tricoordinate pyramidal boron: a computational study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

High-level ab-initio calculations show neutral tri-coordinate pyramidal boron centers P3B and As3B that can be used to activate H2O and NH3 molecule. The acidic center and the basic center of the pyramidal species are bonded, yet due to the spatial arrangement of the respective orbitals, they are forbidden to interact with each other. This bifunctional property is utilized to carry out the activation process of water and ammonia in a metal-free approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Karunadasa HI, Chang CJ, Long JR (2010) Nature 464:1329

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Yoshizawa K (2011) Angew Chem Int Ed 50:11972

    Article  CAS  Google Scholar 

  3. Gunanathan C, Milstein D (2011) Acc Chem Res 44:588

    Article  CAS  PubMed  Google Scholar 

  4. Gutsulyak DV, Piers WE, Borau-Garcia J, Parvez M (2013) J Am Chem Soc 135:11776

    Article  CAS  PubMed  Google Scholar 

  5. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura, M, Paulikas AP, Stamenkovic V Markovic NM (2011) Science 334:1256

  6. Lang SM, Bernhardt TM, Krstic M, Koutecky VM (2014) Phys Chem Chem Phys 16:26578

    Article  CAS  PubMed  Google Scholar 

  7. Ling C, Shi L, Ouyang Y, Zeng XC, Wang J (2017) Nano Lett 17:5133

    Article  CAS  PubMed  Google Scholar 

  8. Ozerov OV (2009) Chem Soc Rev 38:83

    Article  CAS  PubMed  Google Scholar 

  9. Piers WE (2011) Organometallics 30:13

    Article  CAS  Google Scholar 

  10. Liu G, Miliordos E, Ciborowski SM, Tschurl M, Boesl U, Heiz U, Zhang X, Xantheas SS, Bowen K (2018) J Chem Phys 149:221101

    Article  PubMed  Google Scholar 

  11. Bezdek MJ, Guo S, Chirik PJ (2016) Science 354:730

    Article  CAS  PubMed  Google Scholar 

  12. Fang H, Ling Z, Lang K, Brothers PJ, Bruin DD, Fu X (2014) Chem Sci 5:916

    Article  CAS  Google Scholar 

  13. Mayer JM (2011) Acc Chem Res 44:36

    Article  CAS  PubMed  Google Scholar 

  14. Hoover J (2016) Science 354:707

    Article  CAS  PubMed  Google Scholar 

  15. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Science 314:1124

    Article  CAS  PubMed  Google Scholar 

  16. Stephan DW (2015) J Am Chem Soc 137:10018

    Article  CAS  PubMed  Google Scholar 

  17. Stephan DW (2016) Science 354:6317

    Article  Google Scholar 

  18. Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Science 316:439–441

    Article  CAS  PubMed  Google Scholar 

  19. Moerdyk JP, Blake GA, Chase DT, Bielawski CW (2013) J Am Chem Soc 135:18798

    Article  CAS  PubMed  Google Scholar 

  20. Hudnall TW, Moerdyk JP, Bielawski CW (2010) Chem Commun 46:4288

    Article  CAS  Google Scholar 

  21. Siemeling U, Farber C, Bruhn C, Leibold M, Selent D, Baumann W, Hopffgarten MV, Goedecke C, Frenking G (2010) Chem Sci 1:697

    Article  CAS  Google Scholar 

  22. Chase PA, Stephan DW (2008) Angew Chem Int Ed 47:7433

  23. Appelt C, Slootweg JC, Lammertsma K, Uhl W (2013) Angew Chem Int Ed 52:4256

  24. Zhu Z, Wang X, Peng Y, Lei H, Fettinger JC, Rivard E, Power PP (2009) Angew Chem Int Ed 48:2031

    Article  CAS  Google Scholar 

  25. Jana A, Schulzke C, Roesky HW (2009) J Am Chem Soc 131:4600

  26. Meltzer A, S. Inoue S, Prasang C, Driess M (2010) J Am Chem Soc 132:3038

  27. Wang W, Inoue S, Yao S, Driess M (2011) Organometallics 30:4900

  28. Jana A, Objartel I, Roesky HW, Stalke D (2009) Inorg Chem 48:798

  29. Peng Y, Guo JD, Ellis BD, Zhu Z, Fettinger JC, Nagase S, Power PP (2009) J Am Chem Soc 131:16272

  30. Peng Y, Ellis BD, Wang X, Power PP (2008) J Am Chem Soc 130:12268

  31. Alberto ME, Russo N, Sicilia E (2013) Chem Eur J 9:7835

    Article  Google Scholar 

  32. Yao S, Brym M, Wllen CV, Driess M (2007) Angew Chem Int Ed 46:4159

  33. Ghadwal RS, Azhakar R, Roesky HW, Popper K, Dittrich B, Klein S, Frenking G (2011) J Am Chem Soc 133:17552 

  34. Robinson TP, Rosa DMD, Aldridge S, Goicoechea JM (2015) Angew Chem Int Ed 54:13758

  35. Petris GD, Cartoni A, Troiani A, Angelini G, Ursini O (2009) Phys Chem Chem Phys 11:9976

    Article  PubMed  Google Scholar 

  36. Mo Z, Szilvási T, Zhou YP, Yao S, Driess M (2017) Angew Chem Int Ed 56:3699

    Article  CAS  Google Scholar 

  37. Kalita AJ, Rohman SS, Kashyap CK, Ullah SS, Guha AK (2019) Polyhedron 175:14193

    Google Scholar 

  38. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  39. B3LYP is Becke’s three-parameter hybrid method using the LYP correlation functional Becke AD (1993) J Chem Phys 98:5648–5652

  40. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785–789

  41. Vosko, SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

  42. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  PubMed  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez C, Schlegel BH (1989) J Chem Phys 91:2154

    Article  Google Scholar 

  45. Reed AE, Weinhold F, Curtiss LA (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016). Gaussian 16 (Revision A.03), Gaussian Inc 2016 Wallingford CT

  47. Mazumder LJ, Kalita AJ, Rohman SS, Kashyap C, Ullah SS, Baruah I, Boro A, Guha AK, Sharma PK (2021) ACS Omega 6:8656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poater A, Ragone F, Giudice S, Costabile C, Dorta R, Nolan SP, Cavallo L (2008) Organometalics 27:2680

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the computational facility of Cotton University.

Author information

Authors and Affiliations

Authors

Contributions

Amlan J. Kalita, Siddhartha K. Purkayastha, Kangkan Sarmah and Dimpul Konwar did the calculations while Ankur K. Guha supervised the project and wrote the original draft.

Corresponding authors

Correspondence to Dimpul Konwar or Ankur K. Guha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 45 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, A.J., Purkayastha, S.K., Sarmah, K. et al. Metal free activation of water and ammonia by neutral tricoordinate pyramidal boron: a computational study. Struct Chem 34, 971–977 (2023). https://doi.org/10.1007/s11224-022-02060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02060-5

Keywords

Navigation