Skip to main content
Log in

DFT study on the disproportionation of methylchlorosilane catalyzed by AlCl3/4 T-ZSM-5@MIL-53(Al) core–shell catalyst

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Dimethyldichlorosilane is one of the most widely used monomers in the organic silicon industry chain. In the preparation process, it can be obtained by exchanging functional groups through disproportionation reaction. In this research, the disproportionation mechanism catalyzed by 4 T-ZSM-5@MIL-53(Al) and AlCl3/4 T-ZSM-5@MIL-53(Al) core–shell catalysts was studied by using the density functional theory on the level of M06-2X/Def2-TZVP. The results showed that the two catalysts possessed different catalytic effects assigning to different acidic actives. The surface activity of 4 T-ZSM-5@MIL-53(Al) core–shell catalyst modified by AlCl3 became the Lewis acid center of Al–Cl bond, which had better disproportionation activity than that before modification. Energies, frequency vibrations and IRC calculations, bond orders, ELF, and LOL analyses can verify the reaction mechanism proposed in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available because it involves the completion of the national fund project, and the follow-up research will be further studied based on the above data. However, those are available from the corresponding author on reasonable request.

Code availability

Supported by the Gaussian software package of Professor Hong Sanguo.

References

  1. Wang A, Jiang Y, Chen W, Yin H, Liu Y, Shen Y, Jiang T, Wu Z (2012) J Ind Eng Chem 18:237–242

    Article  CAS  Google Scholar 

  2. Ebrahimi F, Farazi R, Karimi EZ, Beygi H (2017) Adv Powder Technol 28:932–937

    Article  CAS  Google Scholar 

  3. Zhang J, Liu L, Si Y, Yu J, Ding B (2021) Mater Chem Front 5:97–128

    Article  CAS  Google Scholar 

  4. Zhu D, Guo Y, Mu C, Jin Z, Yuan S, Qin Y, Zhang J-P, Ai X-C (2020) J Phys Chem C 124:22903–22913

    Article  CAS  Google Scholar 

  5. Janmanchi K, Coppernoll A, Katsoulis D (2020) Ind Eng Chem Res 59:3321–3333

    Article  CAS  Google Scholar 

  6. Yu X, Wei C, Ke L, Wu H, Chai X, Hu Y (2012) J Colloid Interface Sci 369:344–351

    Article  CAS  Google Scholar 

  7. Xu J, Song S, Zhu Y, Jin B, Ji Y, Li Z, Fu D, Zhong Z, Xu G, Su F (2022) J Catal 410:280–293

    Article  CAS  Google Scholar 

  8. Yu J, Mu C, Yan B, Qin X, Shen C, Xue H, Pang H (2017) Mater Horiz 4:557–569

    Article  CAS  Google Scholar 

  9. Li Z, Guo J, Wan Y, Qin Y, Zhao M (2021) Nano Res 15:3514–3532

    Article  Google Scholar 

  10. He H, Li R, Yang Z, Chai L, Jin L, Alhassan SI, Ren L, Wang H, Huang L (2021) Catal Today 375:10–29

    Article  CAS  Google Scholar 

  11. Soleimanpour A, Farsi M, Keshavarz P, Zeinali S (2021) Environ Sci Pollut Res Int 28:37929–37939

    Article  CAS  Google Scholar 

  12. Qi L, Jiang H, Lin T, Chang X, Jiang B (2021) J Taiwan Inst Chem Eng 127:220–227

    Article  CAS  Google Scholar 

  13. Li Y, Chen Y, Huang Z (2014) Chin Chem Lett 25:1540–1544

    Article  CAS  Google Scholar 

  14. Hu X, Chuah GK, Jaenicke S (2017) Appl Catal A 217:1–9

    Article  Google Scholar 

  15. Xu W, Yang M, Liu Y, Guo Z, Hu L, Yang S, Hong S (2018) J Chem Sci 130

  16. Xu W, Wang Y, Li S, Cheng Y, Guo Z, Hu L, Liao M, Peng J, Chen X, Yang S (2020) Appl Organometal Chem 35

  17. Wu H, Liu F, Yi Y, Cao J (2021) J Market Res 15:1844–1853

    CAS  Google Scholar 

  18. Chen H, Yang M, Shang W, Tong Y, Liu B, Han X, Zhang J, Hao Q, Sun M, Ma X (2018) Ind Eng Chem Res 57:10956–10966

    Article  CAS  Google Scholar 

  19. Zhu H, Abou-Hamad E, Chen Y, Saih Y, Liu W, Samal AK, Basset JM (2016) Langmuir 32:2085–2092

    Article  CAS  Google Scholar 

  20. Paul A, Birol T (2019) Annu Rev Mater Res 49:31–52

    Article  CAS  Google Scholar 

  21. Lai X, Hu M, Li Y (2021) Dalton Trans 50:12308–12315

    Article  CAS  Google Scholar 

  22. Makkar P, Ghosh NN (2021) RSC Adv 11:27897–27924

    Article  CAS  Google Scholar 

  23. Yuan Y, Yuan N, Guo T, Bai H, Xia H, Ren Y, Guo Q (2022) Struct Chem 33:721–731

    Article  CAS  Google Scholar 

  24. Paul D, Vaidyanathan A, Sarkar U, Chakraborty B (2021) Struct Chem 32:2259–2270

    Article  CAS  Google Scholar 

  25. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  26. Li G, Meng L, Zhang H, Li X, Zeng Y (2020) Phys Chem Chem Phys 22:18071–18077

    Article  CAS  Google Scholar 

  27. Raju S, Singh HB, Butcher RJ (2020) Dalton Trans 49:9099–9117

    Article  CAS  Google Scholar 

  28. Yoshida T, Ahsan HM, Zhang HT, Izuogu DC, Abe H, Ohtsu H, Yamaguchi T, Breedlove BK, Thom AJW, Yamashita M (2020) Dalton Trans 49:2652–2660

    Article  CAS  Google Scholar 

  29. Chibani S, Chiter F, Cantrel L, Paul J-F (2017) J Phys Chem C 121:25283–25291

    Article  CAS  Google Scholar 

  30. Chaplais G, Simon-Masseron A, Porcher F, Lecomte C, Bazer-Bachi D, Bats N, Patarin J (2009) Phys Chem Chem Phys 11:5241–5245

    Article  CAS  Google Scholar 

  31. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G (2004) Chemistry 10:1373–1382

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 22162010 and 21872049) and Natural Science Foundation of Jiangxi Province (20181BCD40004).

Author information

Authors and Affiliations

Authors

Contributions

Wenyuan Xu: conceptualization, methodology, and funding acquisition. Hongkun Huang: validation, formal analysis, and writing—original draft. Mengsha Shen: visualization. Junjie Fan: investigation. Yu Xu: investigation. Siqi Liu: investigation. Yan Wang: figure enhancement. Xi Chen: data curation. Mengyin Liao: writing-review and editing. Shaoming Yang: project administration. Rongbin Zhang: funding acquisition and project administration.

Corresponding author

Correspondence to Wenyuan Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9862 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Huang, H., Shen, M. et al. DFT study on the disproportionation of methylchlorosilane catalyzed by AlCl3/4 T-ZSM-5@MIL-53(Al) core–shell catalyst. Struct Chem 34, 113–124 (2023). https://doi.org/10.1007/s11224-022-02037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02037-4

Keywords

Navigation