Skip to main content
Log in

Role of central core and methyl substitutions in XH4-x(CH3)x (X = N, P, As; x = 0–4) superalkalis: an ab initio study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Superalkalis are known for their lower ionization energy than alkali atoms. In the last four decades, a lot of exploration has been done to enrich the superalkali series. In this work, we report the superalkali behavior of XH4-x(CH3)x series of molecules for X = N, P, As, and x = 0⎼4. We have systematically studied neutral and cationic NH4-x(CH3)x and PH4-x(CH3)x as well as AsH4-x(CH3)x species using MP2/6⎼311 ++ G(d,p) level by successive substitutions of methyl (CH3) groups. We have also analyzed the effect of substitutions as well as the role of central atom on the ionization energy (IE) of XH4-x(CH3)x. As we move from x = 1 to x = 4, the IE decreases in NH4-x(CH3)x, PH4-x(CH3)x, and AsH4-x(CH3)x, being in the range 3.97–2.77 eV, 4.10–2.76 eV, and 4.40–2.78 eV, respectively. Consequently, these molecules go to superalkalis. Their superalkali behavior has been explained on the basis of charge (de)localization in these species. These findings will provide new way to design superalkali molecules with even lower ionization energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data associated with this article will be available upon reasonable request.

Code availability

Not applicable.

References

  1. Gutsev GL, Boldyrev AI (1982) Chem Phys Lett 92:262

    Article  CAS  Google Scholar 

  2. Lias SG, Bartmess JE, Liebman JF, Homes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17:1

    Article  Google Scholar 

  3. Zhao T, Wang Q, Jena P (2017) Nanoscale 9:4891

    Article  CAS  PubMed  Google Scholar 

  4. Srivastava AK (2018) Int J Quantum Chem 118:e25598

    Article  Google Scholar 

  5. Park H, Meloni G (2017) Dalton Trans 6:11942

    Article  Google Scholar 

  6. Srivastava AK (2018) Chem Phys Lett 695:205

  7. Pan S, Contreras M, Romero J, Reyes A, Chattaraj PK, Merino G (2013) Chem-Eur J 19:2322

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Wu D, Li Z-R (2008) Inorg Chem 47:9773

    Article  CAS  PubMed  Google Scholar 

  9. Yang H, Li Y, Wu D, Li Z-R (2012) Int J Quantum Chem 112:770

    Article  CAS  Google Scholar 

  10. Srivastava AK, Misra N (2014) Mol Phys 112:2621

    Article  CAS  Google Scholar 

  11. Giri S, Bahera S, Jena P (2014) J Phys Chem A 118:638

    Article  CAS  PubMed  Google Scholar 

  12. Srivastava AK, Misra N (2015) New J Chem 39:6787

    Article  CAS  Google Scholar 

  13. Srivastava AK, Misra N (2016) Chem Phys Lett 648:152

    Article  CAS  Google Scholar 

  14. Winfough M, Meloni G (2017) Dalton Trans 47:159

    Article  PubMed  Google Scholar 

  15. Chen W, Li Z-R, Wu D, Li Y, Sun C-C (2005) J Phys Chem A 109:2920

    Article  CAS  PubMed  Google Scholar 

  16. Sun WM, Fan LT, Li Y, Liu JY, Wu D, Li ZR (2014) Inorg Chem 53:6170

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava AK, Misra N (2015) Chem Phys Lett 639:307

    Article  CAS  Google Scholar 

  18. Tong J, Li Y, Wu D, Li Z-R, Huang X-R (2011) J Phys Chem A 115:2041

    Article  CAS  PubMed  Google Scholar 

  19. Tong J, Li Y, Wu D, Wu Z-J (2012) Inorg Chem 51:6081

    Article  CAS  PubMed  Google Scholar 

  20. Tong J, Wu Z, Li Y, Wu D (2013) Dalton Trans 42:577

    Article  CAS  PubMed  Google Scholar 

  21. Sun W-M, Li Y, Wu D, Li Z-R (2013) J Phys Chem C 117:24618

    Article  CAS  Google Scholar 

  22. Srivastava AK (2020) Mol Phys 118:e1730991

    Article  Google Scholar 

  23. Giri S, Reddy GN, Jena P (2016) J Phys Chem Lett 7:800

    Article  CAS  PubMed  Google Scholar 

  24. Ramsey WH (1967) Planet Space Sci 15:1609

    Article  CAS  Google Scholar 

  25. Stevenson DJ (1975) Nature 258:222

    Article  CAS  Google Scholar 

  26. Srivastava AK, Misra N, Tiwari SN (2020) SN Appl Sci 2:307

    Article  CAS  Google Scholar 

  27. Srivastava AK (2019) New J Chem 43:4959

    Article  CAS  Google Scholar 

  28. Srivastava AK (2021) Chem Phys Lett 778:138770

    Article  CAS  Google Scholar 

  29. Boldyrev AI, Simons J (1992) J Chem Phys 97:6621

    Article  CAS  Google Scholar 

  30. Mǿller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G et al (2009) Gaussian 09, Revision C02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  32. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  33. Crofton MW, Oka T (1987) J Chem Phys 86:5983

    Article  CAS  Google Scholar 

  34. Gutovski M, Simons J (1990) J Chem Phys 93:2546

    Article  Google Scholar 

Download references

Funding

A. K. Srivastava acknowledges the funding received from the University Grants Commission through start up grant number 30–466/2019(BSR).

Author information

Authors and Affiliations

Authors

Contributions

H. S., literature survey, calculations, data collection, and writing draft. A. K. S., conceptualization, supervision, editing, and finalizing the draft.

Corresponding author

Correspondence to Ambrish Kumar Srivastava.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, H., Srivastava, A.K. Role of central core and methyl substitutions in XH4-x(CH3)x (X = N, P, As; x = 0–4) superalkalis: an ab initio study. Struct Chem 34, 617–623 (2023). https://doi.org/10.1007/s11224-022-02003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02003-0

Keywords

Navigation