Skip to main content
Log in

Host–guest binding selectivity of ethylated pillar[5]arene (EtP5A) towards octane, 1,7-octadiene, and 1,7-octadiyne: a computational investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Host–guest binding selectivity of the perethylated pillar[5]arene (EtP5A) macrocycles with aliphatic modified hydrocarbons, i.e., octane, 1,7-octadiene, and 1,7-octadiyne as guests, has been investigated computationally employing molecular docking simulations. Density functional theory (DFT) investigations were also performed on these host–guest complexes using the dispersion-corrected approach BLYP-D3(BJ)/TZP/COSMO calculations as implemented in the ADF program and two dispersion-corrected density functionals, ωB97XD and B97D, along with the 6-311G* basis set, coupled with the PCM solvation model as implemented in the Gaussian software. We performed analysis of the frontier molecular orbitals (FMO) and natural bond orbitals (NBO), energy decomposition analysis (EDA), and noncovalent interaction (NCI-RDG) analysis. The study sheds light on the structures and binding energetics of EtP5A with the above-mentioned guests as well as on the physicochemical nature of the noncovalent interactions involved in these host–guest inclusion complexes. Based on the docking simulations, the EtP5A host revealed slightly better binding ability in the complex with the alkyne guest than with the octane and alkene, as corroborated by the EDA analysis. The results showed that the complexation of EtP5A with the hydrocarbons is mainly governed by the interplay of electrostatic interactions and dispersive noncovalent interactions. These results agree well with NCI-RDG and NBO analysis showing that host–guest binding interactions result predominantly from electrostatic C-H···π and van der Waals interactions, the H-bonding being weak or not observed. The results obtained using different computational methods were found to be in good agreement and complementary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Commercial license. Amsterdam Molecular Simulation AMS2021: www.scm.com. Gaussian 09, Revision B.01: https://gaussian.com/. Open-source. Avogadro version 1.2.0n. http://avogadro.cc/. Molden version 5.8.2: https://www.theochem.ru.nl/molden/. Multiwfn: http://sobereva.com/multiwfn/. AutoDock and AutoDockTools: http://autodock.scripps.edu; http://mgltools.scripps.edu/downloads. Aleksey Kuznetsov appreciates computational facilities of the Department of Chemistry, ITA, Brazil.

References

  1. Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z, Huang F (2011) Formation of linear supramolecular polymers that is driven by C−H⋅⋅⋅π interactions in solution and in the solid state. Angew Chem Int Ed 50:1397–1401. https://doi.org/10.1002/anie.201006693

    Article  CAS  Google Scholar 

  2. Ma X, Zhao Y (2015) Biomedical applications of supramolecular systems based on host–guest interactions. Chem Rev 115:7794. https://doi.org/10.1021/cr500392w

    Article  CAS  PubMed  Google Scholar 

  3. Kataev EA (2016) Non-covalent interactions in the synthesis of macrocycles. In Non-covalent Interactions in the Synthesis and Design of New Compounds; John Wiley & Sons Ltd; pp 63–82. https://doi.org/10.1002/9781119113874.ch4

  4. Zhou J, Yu G, Huang F (2017) Supramolecular chemotherapy based on host-guest molecular recognition; a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 46:7021–7053. https://doi.org/10.1039/C6CS00898D

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Liu YA, Yang H, Hu W-B, Wen K (2022) Ortho-functionalization of pillar[5]arene: an approach to mono-ortho-alkyl/aryl-substituted A1/A2-dihydroxypillar[5]arene. Org Lett 24:1822–1826. https://doi.org/10.1021/acs.orglett.2c00272

    Article  CAS  PubMed  Google Scholar 

  6. Guo L, Du J, Wang Y, Shi K, Ma E (2020) Advances in diversified application of pillar[n]arenes. J Incl Phenom Macrocycl Chem 97:1–17. https://doi.org/10.1007/s10847-020-00986-z

    Article  CAS  Google Scholar 

  7. Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y (2008) Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc 130:5022–5023. https://doi.org/10.1021/ja711260m

    Article  CAS  PubMed  Google Scholar 

  8. Cragg PJ, Sharma K (2012) Pillar[5]arenes: Fascinating cyclophanes with a bright future. Chem Soc Rev 41:597–607. https://doi.org/10.1039/C1CS15164A

    Article  CAS  PubMed  Google Scholar 

  9. Nan S, Ying-Wei Y (2014) Applications of pillarenes, an emerging class of synthetic macrocycles. Sci China Chem 57:1185–1198. https://doi.org/10.1007/s11426-014-5190-z

    Article  CAS  Google Scholar 

  10. Suvitha A, Venkataramanan NS (2017) Trapping of organophosphorus chemical nerve agents by pillar[5] arene: a DFT. AIM, NCI and EDA analysis, J Incl Phenom Macrocycl Chem 87:207–218. https://doi.org/10.1007/s10847-017-0691-y

    Article  CAS  Google Scholar 

  11. Li H, Yang Y, Xu F, Liang T, Wen H, Tian W (2019) Pillararene-based supramolecular polymers. Chem Commun 55:271–285. https://doi.org/10.1039/C8CC08085B

    Article  CAS  Google Scholar 

  12. Sun J, Hou Y, Dai Y, Wu Q, Dong Y, Zhao J,Liu, Q (2021) Fluorescence quenched and boosted by a-PET effect and host-guest complexation respectively in BODIPY-functionalized pillar[5]arene. Dyes Pigm 188:109163. https://doi.org/10.1016/j.dyepig.2021.109163

    Article  CAS  Google Scholar 

  13. Nierengarten I, Holler M, Rémy M, Hahn U, Billot A, Deschenaux R, Nierengarten J-F (2021) Grafting dendrons onto pillar[5]arene scaffolds. Molecules 26:2358. https://doi.org/10.3390/molecules26082358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan Y, Hu K, Nan J, Shen Y (2021) Tetraphenylethene-embedded pillar[5]arene and [15]paracyclophane: distorted cavities and host–guest binding properties. Molecules 26:5915. https://doi.org/10.3390/molecules26195915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang H-L, Li Z-H, Liu P-P, Sun X-W, Wang Z-H, Yao H, Zhang Y-M, Wei T-B, Lin Q (2020) Metal-free white light-emitting fluorescent material based on simple pillar[5]arene-tripodal amide system and theoretical insights on its assembly and fluorescent properties. Langmuir 36:13469–13476. https://doi.org/10.1021/acs.langmuir.0c02120

    Article  CAS  PubMed  Google Scholar 

  16. Plumb JA, Venugopal B, Oun R, Gomez-Roman N, Kawazoe Y, Venkataramanan NS, Wheate NJ (2012) Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics 4:561–567. https://doi.org/10.1039/C2MT20054F

    Article  CAS  PubMed  Google Scholar 

  17. Wheate NJ, Limantoro C (2016) Cucurbit[n]urils as excipients in pharmaceutical dosage forms. Supramol Chem 28:849–856. https://doi.org/10.1080/10610278.2016.1178746

    Article  CAS  Google Scholar 

  18. Wang K, Yang YW, Zhang SX (2012) Research progress on the synthesis of pillar[n]arenes and their host-guest chemistry. Chem J Chin Univ 33:1–13. https://doi.org/10.3969/j.issn.0251-0790.2012.01.001

    Article  Google Scholar 

  19. Cao D, Meier H (2014) Pillar[n]arenes: a novel, highly promising class of macrocyclic host molecules. Asian J Org Chem 3:244–262. https://doi.org/10.1002/ajoc.201300224

    Article  CAS  Google Scholar 

  20. Tao H, Cao D, Liu L, Kou Y, Wang L, Meier H (2012) Synthesis and host-guest properties of pillar[6]arenes. Sci China Chem 55:223–228. https://doi.org/10.1007/s11426-011-4427-3

    Article  CAS  Google Scholar 

  21. Lou X, Chen H, Jia X, Li C (2015) Complexation of linear aliphatic ester. aldehyde and ketone guests by per-ethylated pillar[5]arene. Chin J Chem 33:335–338. https://doi.org/10.1002/cjoc.201400889

  22. Venkataramanan NS, Suvitha A, Vijayaraghavan A, Thamotharan S (2017) Investigation of inclusion complexation of acetaminophen with pillar [5]arene: UV–Vis, NMR and quantum chemical study. J Mol Liq 241:782–791. https://doi.org/10.1016/j.molliq.2017.06.095

    Article  CAS  Google Scholar 

  23. Ogoshi T, Sueto R, Yoshikoshi K, Sakata Y, Akine S, Yamagishi T (2015) Host-guest complexation of perethylated pillar[5]arene with alkanes in the crystal state. Angew Chem Int Ed 54:9849–9852. https://doi.org/10.1002/anie.201503489

    Article  CAS  Google Scholar 

  24. Ogosh T, Hamada Y, Sueto R, Sakata Y, Akine S, Moeljadi AMP, Hirao H, Kakuta T, Yamagishi T, Mizuno M (2019) Host-guest complexation using pillar[5]arene crystals: crystal‐structure dependent uptake. Release, and Molecular Dynamics of an Alkane Guest. Chem Eur J 25:2497–2502. https://doi.org/10.1002/chem.201805733

  25. Li C, Chen S, Li J, Han K, Xu M, Hu B, Yu Y, Jia X (2011) Novel neutral guest recognition and interpenetrated complex formation from pillar[5]arenes. Chem Commun 47:11294–11296. https://doi.org/10.1039/C1CC14829J

    Article  CAS  Google Scholar 

  26. Venkataramanan NS, Suvitha A, Kawazoe Y (2019) Unraveling the binding nature of hexane with quinone functionalized pillar[5]quinone: a computational study. J Incl Phenom Macrocycl Chem 95:307–319. https://doi.org/10.1007/s10847-019-00945-3

    Article  CAS  Google Scholar 

  27. Li Z-H, Yang H-L, Wei T-B, Lin Q (2021) Investigation of the assembly mechanism of N1, N4-di (pyridin-4-yl) terephthalamide with pillar[5]arene: experiment and quantum chemical study. Chem Phys Lett 772:138533. https://doi.org/10.1016/j.cplett.2021.138533

    Article  CAS  Google Scholar 

  28. Li F, Zhang G, Xia S, Yu L (2019) Host-guest interactions accompanying the cationic nitrogen heterocyclic guests encapsulation within pillar[5]arene: a theoretical research. J Mol Struct 1198:126862. https://doi.org/10.1016/j.molstruc.2019.07.109

    Article  CAS  Google Scholar 

  29. Ogoshi T (2012) Synthesis of novel pillar-shaped cavitands “pillar[5]arenes” and their application for supramolecular materials. J Incl Phenom Macrocycl Chem 72:247–262. https://doi.org/10.1007/s10847-011-0027-2

    Article  CAS  Google Scholar 

  30. Bhattacharyya PK (2015) Reactivity, aromaticity and absorption spectra of pillar[5]arene conformers: a DFT study. Comput Theor Chem 1066:20–27. https://doi.org/10.1016/j.comptc.2015.05.007

    Article  CAS  Google Scholar 

  31. Tan LL, Zhang Y, Li B, Wang K, Zhang XA, Tao Y, Yang YW (2014) Selective recognition of “solvent” molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces. New J Chem 38:845–851. https://doi.org/10.1039/C3NJ01498C

    Article  CAS  Google Scholar 

  32. Shurpik DN, Stoikov II (2016) Covalent assembly of tris-pillar[5]arene. Russ J Gen Chem 86:752–755. https://doi.org/10.1134/S1070363216030439

    Article  CAS  Google Scholar 

  33. Xie J, Zuo T, Huang Z, Huan L, Gu Q, Gao C, Shao J (2016) Theoretical study of a novel imino bridged pillar[5]arene derivative. Chem Phys Lett 662:25–30. https://doi.org/10.1016/j.cplett.2016.09.010

    Article  CAS  Google Scholar 

  34. Sharma H, Deka BC, Saha B, Bhattacharyya PK (2018) Understanding the structure, reactivity and absorption spectra of borazine doped pillar[5]arene: a DFT study. Comput Theor Chem 1139:82–89. https://doi.org/10.1016/j.comptc.2018.07.011

    Article  CAS  Google Scholar 

  35. Athare SV, Gejji SP (2019) Hydrogen bonding versus H−H interactions in pillar[n]arenes. ChemistrySelect 4:9354–9359. https://doi.org/10.1002/slct.201901984

    Article  CAS  Google Scholar 

  36. Ogoshi T, Yamagishi T (2014) Pillar[5] – and pillar[6]arene-based supramolecular assemblies built by using their cavity-size dependent host-guest interactions. Chem Commun 50:4776–4787. https://doi.org/10.1039/C4CC00738G

    Article  CAS  Google Scholar 

  37. Kou Y, Cao D, Tao H, Wang L, Liang J, Chen J, Meier H (2013) Synthesis and inclusion properties of pillar[n]arenes. J Incl Phenom Macrocycl Chem 77:279–289. https://doi.org/10.1007/s10847-012-0242-5

    Article  CAS  Google Scholar 

  38. Ogoshi T, Yamagishi T (2014) Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host-guest interactions. Chem Commun 50:4776–4787. https://doi.org/10.1039/C4CC00738G

    Article  CAS  Google Scholar 

  39. Wang Y, Ping G, Li C (2016) Efficient complexation between pillar[5]arenes and neutral guests: from host-guest chemistry to functional materials. Chem Commun 32:9858–9872. https://doi.org/10.1039/C6CC03999E

    Article  CAS  Google Scholar 

  40. Li C, Zhao L, Li J, Ding X, Chen S, Zhang Q, Yu Y, Jia X (2010) Self-Assembly of [2]pseudorotaxanes based on pillar[5]arene and bis(imidazolium) cations. Chem Commun 46:9016–9018. https://doi.org/10.1039/C0CC03575K

    Article  CAS  Google Scholar 

  41. Shu X, Fan J, Li J, Wang X, Chen W, Jia X, Li C (2012) Complexation of neutral 1.4-dihalobutanes with simple pillar[5]arenes that is dominated by dispersion forces. Org Biomol Chem 10:3393–3397. https://doi.org/10.1039/C2OB25251A

  42. Athare SV, Gejji SP (2019) Probing binding of ethylated pillar[5]arene with pentene and chlorobutane positional isomers. J Phys Chem A 123:8391–8396. https://doi.org/10.1021/acs.jpca.9b05563

    Article  CAS  PubMed  Google Scholar 

  43. Panneerselvam M, Kumar MD, Jaccob M, Solomon RV (2018) Computational unravelling of the role of alkyl groups on the host-guest complexation of pillar[5]arenes with neutral dihalobutanes. ChemistrySelect 3:1321–1334. https://doi.org/10.1002/slct.201702541

    Article  CAS  Google Scholar 

  44. Hu X-S, Deng H-M, Li J, Jia X-S, Li C-J (2013) Selective binding of unsaturated aliphatic hydrocarbons by a pillar[5]arene. Chin Chem Lett 24:707–709. https://doi.org/10.1016/j.cclet.2013.05.008

    Article  CAS  Google Scholar 

  45. Jie K, Zhou Y, Li E, Zhao R, Liu M, Huang F (2018) Linear positional isomer sorting in nonporous adaptive crystals of a pillar[5]arene. J Am Chem Soc 140:3190–3193. https://doi.org/10.1021/jacs.7b13156

    Article  CAS  PubMed  Google Scholar 

  46. Trott O, Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function. Efficient Optimization. and Multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

  47. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  Google Scholar 

  48. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967. https://doi.org/10.1002/jcc.1056

    Article  Google Scholar 

  49. ADF 2021.107, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. E.J. Baerends, T. Ziegler, A.J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, C. Daul, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, A. Förster, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A. Goez, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, Z. Hu, C.R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J.W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev.

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian Inc, Wallingford

  51. Mirzaeva IV, Kovalenko EA, Fedin VP (2016) Theoretical study of host–guest interactions in complexes of cucurbit[7]uril with protonated amino acids. Supramol Chem 28:857–863. https://doi.org/10.1080/10610278.2016.1194420

    Article  CAS  Google Scholar 

  52. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  53. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  54. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry. Kinetics. and Noncovalent Interactions. Phys Chem Chem Phys 19:32184–32215. https://doi.org/10.1039/C7CP04913G

  55. Pye CC, Ziegler T (1999) An implementation of the conductor-like screening model of solvation within the amsterdam density functional package. Theor Chem Acc 101:396–408. https://doi.org/10.1007/s002140050457

    Article  CAS  Google Scholar 

  56. Lu T, Chen F, Multiwfn A (2012) A multifunctional wavefunction analyzer. J Comp Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  57. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graphics 14:33–38. http://www.ks.uiuc.edu/Research/vmd/

  58. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theo Comput 5:962–975. https://doi.org/10.1021/ct800503d

    Article  CAS  Google Scholar 

  59. Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C=O···H–O hydrogen bond in H2CO···H2O and H2CO···2H2O. J Chem Phys 55:1236. https://doi.org/10.1063/1.1676210

  60. Pan S, Saha R, Mandal S, Mondal S, Gupta A, Gernández MH, Merino G, Chattaraj PK (2016) Selectivity in gas adsorption by molecular cucurbit[6]uril. J Phys Chem C 120:13911–13921. https://doi.org/10.1021/acs.jpcc.6b02545

    Article  CAS  Google Scholar 

  61. Bhadane SA, Lande DN, Gejji SP (2016) Understanding binding of cyano-adamantyl derivatives to pillar[6]arene macrocycle from density functional theory. J Phys Chem A 120:8738–8749. https://doi.org/10.1021/acs.jpca.6b08512

    Article  CAS  PubMed  Google Scholar 

  62. Chain J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/B810189B

    Article  Google Scholar 

  63. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  64. McLean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11–18. J Chem Phys 72:5639–48. https://doi.org/10.1063/1.438980

  65. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–54. https://doi.org/10.1063/1.438955

  66. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  67. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. ChemRev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  68. Schaftenaar G, Noordik JH (2000) Molden, a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Design 14:123–134. https://doi.org/10.1023/A:1008193805436

    Article  CAS  Google Scholar 

  69. Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0n. http://avogadro.cc/

  70. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 41:1–17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  71. Khedkar JK, Jagtap KK, Pinjari RV, Ray AK, Gejji SP (2012) Binding of rhodamine B and kiton red S to cucurbit[7]uril: density functional investigations. J Mol Model 18:743–3750. https://doi.org/10.1007/s00894-012-1375-6

    Article  CAS  Google Scholar 

  72. Venkataramanan NS, Suvitha A (2017) Theoretical investigation of the binding of nucleobases to cucurbiturils by dispersion corrected DFT approaches. J Phys Chem B 121:4733–4744. https://doi.org/10.1021/acs.jpca.6b10310

    Article  CAS  PubMed  Google Scholar 

  73. Shewale MN, Lande DN, Gejji SP (2016) Encapsulation of benzimidazole derivatives within cucurbit[7]uril: density functional investigations. J Mol Liq 216:309–317. https://doi.org/10.1016/j.molliq.2015.12.076

  74. Murry JS, Seminario JM, Politzer P (1989) A computational study of the structures and electrostatic potentials of some azines and nitroazines. J Mol Struct: THEOCHEM 187:95–108. https://doi.org/10.1016/0166-1280(89)85152-8

    Article  Google Scholar 

  75. Silva DS, Oliveria BG (2017) New insights about the hydrogen bonds formed between acetylene and hydrogen fluoride: π⋯H, C⋯H and F⋯H. Spectrosc Chem Acta A Mol Biomo 173:160–169. https://doi.org/10.1016/j.saa.2016.08.054

    Article  CAS  Google Scholar 

  76. Lakshmipriya A, Suryaprakash N (2016) Two- and three-centered hydrogen bonds involving organic fuorine stabilize conformations of hydrazide halo derivatives: NMR. IR, QTAIM, NCI, and theoretical evidence, J Phys Chem A 120:7810–7816. https://doi.org/10.1021/acs.jpca.6b06362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Algerian PRFU project (2022–2024: Grant No. B00L01EN250120220001) and the French GENCI IDRIS and GENCI-CINES for an allocation of computing time (Grant No. 2021-080649).

Funding

Aleksey Kuznetsov appreciates the financial support of USM and computational facilities of the Department of Chemistry, ITA, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Adel Krid, conceptualization, investigation, material preparation, and data collection. Lotfi Belkhiri, formal analysis, project administration, supervision, and writing — original draft. Hamza Allal, methodology, software, and validation. Aleksey Kuznetsov, conceptualization, writing — original draft, supervision, investigation, data collection, software, and validation. Abdou Boucekkine, writing — review and editing, and supervision.

Corresponding author

Correspondence to Lotfi Belkhiri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1143 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krid, A., Belkhiri, L., Allal, H. et al. Host–guest binding selectivity of ethylated pillar[5]arene (EtP5A) towards octane, 1,7-octadiene, and 1,7-octadiyne: a computational investigation. Struct Chem 34, 625–638 (2023). https://doi.org/10.1007/s11224-022-02002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02002-1

Keywords

Navigation