Skip to main content
Log in

A computational DFT insight into adsorption properties of urea and creatinine molecules on pristine B24O24 nanocluster

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, the sensing properties of the B24O24 nanocage toward the urea/creatinine molecules are presented via density functional theory (DFT) at GGA/PBE/DNP computational level. The complexes formed between urea molecules with B24O24 nanocage showed the average adsorption energy of − 1.64/ − 1.14 and − 1.55/ − 1.10 eV for 1:1 and 4:1 complexes in the gas phase/water medium, respectively. The corresponding values are − 0.69/ − 0.64 and − 0.61/ − 0.95 eV for the creatinine complexes with the desired nanocage. Adsorption of urea/creatinine molecules caused a remarkable change in the band gap (Eg) and work function (Φ) of the B24O24 nanocage in the studied complexes. Due to proper recovery time, the B24O24 nanocage is desired as a sensor for sensing the creatinine molecules. Still, it can be used as a disposable urea sensor. The considered nanocage may be applicable for urea removal due to the desirable average adsorption energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Pundir C, Jakhar S, Narwal V (2019) Determination of urea with special emphasis on biosensors: a review. Biosens Bioelectron 123:36–50. https://doi.org/10.1016/j.bios.2018.09.067

    Article  CAS  PubMed  Google Scholar 

  2. Kumar V, Kaur I, Arora S, Mehla R, Vellingiri K, Kim K-H (2020) Graphene nanoplatelet/graphitized nanodiamond-based nanocomposite for mediator-free electrochemical sensing of urea. Food Chem 303:125375. https://doi.org/10.1016/j.foodchem.2019.125375

    Article  CAS  PubMed  Google Scholar 

  3. McLeish MJ, Kenyon GL (2005) Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol 40(1):1–20. https://doi.org/10.1080/10409230590918577

    Article  CAS  PubMed  Google Scholar 

  4. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38(10):1933–1953. https://doi.org/10.1093/clinchem/38.10.1933

    Article  CAS  PubMed  Google Scholar 

  5. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, Hostetter T, Levey AS, Panteghini M, Welch M (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52(1):5–18. https://doi.org/10.1373/clinchem.2005.0525144

    Article  CAS  PubMed  Google Scholar 

  6. Baei MT (2014) Adsorption of the urea molecule on the B12N12 nanocage. Turk J Chem 38(4):531–537

    Article  CAS  Google Scholar 

  7. Santana JE, De Santiago F, Iturrios MI, Miranda Á, Pérez LA, Cruz-Irisson M (2021) Adsorption of urea on metal-functionalized Si nanowires for a potential uremia diagnosis: A DFT study. Mater Lett 298:130016. https://doi.org/10.1016/j.matlet.2021.130016

    Article  CAS  Google Scholar 

  8. Maleki R, Jahromi AM, Mohaghegh S, Rezvantalab S, Khedri M, Tayebi L (2021) A molecular investigation of urea and creatinine removal in the wearable dialysis device using two-dimensional materials. Appl Surf Sci 566:150629. https://doi.org/10.1016/j.apsusc.2021.150629

    Article  CAS  Google Scholar 

  9. Claeyssens F, Allan NL, Norman NC, Russell CA (2010) Design of three-dimensional solid-state boron oxide networks: Ab initio calculations using density functional theory. Phys Rev B 82(9):094119

    Article  Google Scholar 

  10. Zhang Z, Pu L, Li QS, King RB (2015) Pathways to the polymerization of boron monoxide dimer to give low-density porous materials containing six-membered boroxine rings. Inorg Chem 54(6):2910–2915. https://doi.org/10.1021/ic503036b

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Liu C, Pu L, Zhang Z, King R (2017) Boron monoxide dimer as a building block for boroxine based buckyballs and related cages: a theoretical study. Chem Commun 53(22):3239–3241. https://doi.org/10.1039/C6CC09489A

    Article  CAS  Google Scholar 

  12. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517. https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  13. Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Phys Chem 100(15):6107–6110. https://doi.org/10.1021/jp952713n

    Article  CAS  Google Scholar 

  14. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764. https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  15. Kim E, Weck PF, Berber S, Tománek D (2008) Mechanism of fullerene hydrogenation by polyamines: Ab initio density functional calculations. Phys Rev B 78(11):113404

    Article  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Li W-X (2009) First-principles investigation of surface and subsurface H adsorption on Ir (111). J Phys Chem C 113(51):21361–21367. https://doi.org/10.1021/jp9074866

    Article  CAS  Google Scholar 

  18. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99(7):2224–2235. https://doi.org/10.1021/j100007a062

    Article  CAS  Google Scholar 

  19. Léon I, Tasinato N, Spada L, Alonso ER, Mata S, Balbi A, Puzzarini C, Alonso JL, Barone V (2021) Looking for the elusive imine tautomer of creatinine: different states of aggregation studied by quantum chemistry and molecular spectroscopy. Chem Plus Chem 86(10):1374–1386. https://doi.org/10.1002/cplu.202100224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Butler AR, Glidewell C (1985) Creatinine: an examination of its structure and some of its reactions by synergistic use of MNDO calculations and nuclear magnetic resonance spectroscopy. J Chem Soc, Perkin Transac 2(9):1465–1467. https://doi.org/10.1039/P29850001465

    Article  Google Scholar 

  21. Kenyon GL, Rowley GL (1971) Tautomeric preferences among glycocyamidines. J Am Chem Soc 93(21):5552–5560. https://doi.org/10.1021/ja00750a039

    Article  CAS  Google Scholar 

  22. Gao J, Hu Y, Li S, Zhang Y, Chen X (2013) Tautomeric equilibrium of creatinine and creatininium cation in aqueous solutions explored by Raman spectroscopy and density functional theory calculations. Chem Phys 410:81–89. https://doi.org/10.1016/j.chemphys.2012.11.002

    Article  CAS  Google Scholar 

  23. Kotsyubynskyy D, Molchanov S, Gryff‐Keller A (2004) Creatinine and creatininium cation in DMSO‐d6 solution. Structure and restricted internal rotation of NH2 group. Magne Resona Chem 42(12):1027–1036. https://doi.org/10.1002/mrc.1487

  24. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2022) DFT study on the adsorption properties of aldrin and dieldrin molecules on blue phosphorene nanotubes. Physica B 626:413545. https://doi.org/10.1016/j.physb.2021.413545

    Article  CAS  Google Scholar 

  25. Liang X, Zhang Q, Zhao Q, Zhao H, Feng Y, Suo B, Han H, Song Q, Li Y, Zou W (2019) CO2 adsorption on the B12N12 nanocage encapsulated with alkali metals: a density functional study. NANO 14(03):1950034

    Article  CAS  Google Scholar 

  26. Hussain S, Hussain R, Mehboob MY, Chatha SAS, Hussain AI, Umar A, Khan MU, Ahmed M, Adnan M, Ayub K (2020) Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT study. ACS Omega 5(13):7641–7650. https://doi.org/10.1021/acsomega.0c00507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rahimi R, Solimannejad M (2018) Can bowl-like B30 nanostructure sense toxic cyanogen gas in air?: a theoretical study. Mol Phys 116(17):2196–2204. https://doi.org/10.1080/00268976.2018.1467051

    Article  CAS  Google Scholar 

  28. Rahimi R, Solimannejad M, Chaudhari A (2021) Toxic volatile organic compounds sensing by Al2C monolayer: a first-principles outlook. J Hazard Mater 403:123600. https://doi.org/10.1016/j.jhazmat.2020.123600

    Article  CAS  PubMed  Google Scholar 

  29. Rahimi R, Solimannejad M (2021) Gas-sensing performance of BC3 nanotubes for detecting poisonous cyanogen gas: a periodic DFT approach. New J Chem 45(26):11574–11584. https://doi.org/10.1039/D1NJ01977E

    Article  CAS  Google Scholar 

  30. Rahimi R, Solimannejad M (2021) Sensing ability of 2D Al2C monolayer toward toxic pnictogen hydrides: a first-principles perspective. Sens Actuators, A 331:113000. https://doi.org/10.1016/j.sna.2021.113000

    Article  CAS  Google Scholar 

  31. Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C 119(11):6398–6404. https://doi.org/10.1021/jp513019z

    Article  CAS  Google Scholar 

  32. Stegmeier S, Fleischer M, Hauptmann P (2010) Influence of the morphology of platinum combined with β-Ga2O3 on the VOC response of work function type sensors. Sens Actuators, B Chem 148(2):439–449. https://doi.org/10.1016/j.snb.2010.05.030

    Article  CAS  Google Scholar 

  33. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933

    Article  CAS  Google Scholar 

  34. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18):185504

    Article  PubMed  Google Scholar 

  35. Aghaei SM, Monshi M, Torres I, Zeidi S, Calizo I (2018) DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: a search for highly sensitive molecular sensor. Appl Surf Sci 427:326–333. https://doi.org/10.1016/j.apsusc.2017.08.048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rezvan Gholami: Conceptualization, software. Mohammad Solimannejad: Supervision, Writing—original draft.

Corresponding author

Correspondence to Mohammad Solimannejad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, R., Solimannejad, M. A computational DFT insight into adsorption properties of urea and creatinine molecules on pristine B24O24 nanocluster. Struct Chem 34, 577–584 (2023). https://doi.org/10.1007/s11224-022-01998-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01998-w

Keywords

Navigation