Skip to main content
Log in

Comparative computational studies for nucleophilic aromatic substitution of dinitro-substituted benzannulated heterocycles with 1H-1,2,3-triazole

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanistic pathways for nucleophilic aromatic substitution of the nitro groups of 5,7-dinitro-3H-quinazolin-4-one and 1,3-dinitro-10H-dibenzo[b,f][1,4]oxazepin-11-one with 1H-1,2,3-triazole have been studied in both gas and solvent phase employing DFT/B3LYP calculations using 6-31G(d,p) basis set. The energetic parameters, i.e., free energy profiles along the reaction route and H-bond energy, charge analysis, and structural parameters have supported mechanistic pathway involving one-step concerted mechanism via formation of transition state during the reaction course. Despite substantial steric hindrance at adjacent position to fusion point, the regioselective attack of 1H-1,2,3-triazole has been observed at peri-position of benzannulated heterocycles. This regioselectivity is credited to intramolecular hydrogen bond C–H···O = C which stabilizes peri-transition state formation rather than para-transition state. The hydrogen bond acceptor–donor interactions have been studied using AIM method. The DFT and AIM analysis-derived results are compared for different sized dinitro-substituted benzannulated heterocycles and these studies have confirmed the contribution of substantial steric hindrance at peri-position with increased size of heterocycle. As benzannulated heterocycles are quite significant from the perspective of medicinal and natural product chemistry, this work will fulfill the need to find an efficient synthetic method for benzannulated heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 5
Scheme 6

Similar content being viewed by others

Data availability

Supplementary data is provided with the submission.

References

  1. Evans PA, Holmes B (1991) Medium ring nitrogen heterocycles. Tetrahedron 47(44):9131–9166

    Article  CAS  Google Scholar 

  2. Cao D, Zhan K, An R, Xu H, Hao S, Yang X, Hou Z, Guo C (2019) The efficient synthesis of benzannulated seven-membered O-heterocycles via the intramolecular ring-opening cyclization of cyclopropanes. Org Lett 21(22):8948–8951

    Article  CAS  PubMed  Google Scholar 

  3. Ouyang X, Tamayo N, Kiselyov AS (1999) Solid support synthesis of 2-substituted dibenz[b, f] oxazepin-11(10H)-ones via SNAr methodology on AMEBA resin. Tetrahedron 55(10):2827–2834

    Article  CAS  Google Scholar 

  4. Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV (2010) Handbook of heterocyclic chemistry. Elsevier

    Google Scholar 

  5. Yuan L, Huang W, Gao Y, Gao X, Hu Q, Ma Y (2014) A new chromone from the stems of Cassia fistula and its anti-tobacco mosaic virus activity. Chem Asian J 26(23):8253

    Article  Google Scholar 

  6. Kotha S, Mandal K, Tiwari A, Mobin SM (2006) Diversity-oriented approach to biologically relevant molecular frameworks starting with β-naphthol and using the Claisen rearrangement and olefin metathesis as key steps. Chem Eur J 12(31):8024–8038

    Article  CAS  PubMed  Google Scholar 

  7. Hino K, Nakamura H, Kato S, Irie A, Nagai Y, Uno H (1988) Nonsteroidal anti-inflammatory agents III synthesis of the metabolites of 10, 11-dihydro-8, α-dimethyl-11-oxodibenz [b, f] oxepin-2-acetic acid (bermoprofen). Chem Pharm Bull 36(9):3462–3467

    Article  CAS  Google Scholar 

  8. Nakamura H, Yokoyama Y, Seto Y, Kadokawa T, Shimizu M (1984) AD-1590, a potent antagonist of lipopolysaccharide-induced fever in rabbits. J Pharm Pharmacol 36(3):182–186

    Article  CAS  PubMed  Google Scholar 

  9. Asai T, Otsuki S, Sakurai H, Yamashita K, Ozeki T, Oshima Y (2013) Benzophenones from an endophytic fungus, Graphiopsis chlorocephala, from Paeonia lactiflora cultivated in the presence of an NAD+-dependent HDAC inhibitor. Org Lett 15(8):2058–2061

    Article  CAS  PubMed  Google Scholar 

  10. Lin J, Liu S, Sun B, Niu S, Li E, Liu X, Che Y (2010) Polyketides from the ascomycete fungus Leptosphaeria sp. J Nat Prod 73(5):905–910

    Article  CAS  PubMed  Google Scholar 

  11. Kislyi KA, Samet AV, Strelenko YA, Semenov VV (2008) Synthetic utilization of polynitroaromatic compounds. Remarkable regioselectivity in nucleophilic displacement of aromatic nitro groups with amines. J Org Chem 73(6):2285–2291

  12. Fischer W, Kvita V (1985) Aromatic nucleophilic substitution. Part 2. Preparation of novel 3‐substituted xanthone and thioxanthone derivatives. Helv Chim Acta 68(4):854–859

  13. Samet AV, Marshalkin VN, Kislyi KA, Chernysheva NB, Strelenko YA, Semenov VV (2005) Synthetic utilization of polynitroaromatic compounds. Preparation of substituted dibenz [b, f][1, 4] oxazepine-11 (10 H)-ones from 2, 4, 6-trinitrobenzoic acid via nucleophilic displacement of nitro groups. J Org Chem 70(23):9371–9376

  14. Samet AV, Marshalkin VN, Lyssenko KA, Semenov VV (2009) Synthesis of substituted dibenz [b, f] oxepines from 2, 4, 6-trinitrotoluene. Russ Chem Bull 2(58):347–350

    Article  Google Scholar 

  15. Singh A, Singh A, A, Singh K, Singh G, Saroa A, (2021) Role of non-conventional hydrogen bonding in controlling regioselectivity for nucleophilic aromatic substitution of 4, 6-dinitroisoindoline-1, 3-dione with 1, 2, 3-triazole isomers: a computational studies. Struct Chem 32(3):1269–1278

    Article  CAS  Google Scholar 

  16. Turi L, Dannenberg JJ (1993) Molecular orbital studies of CH... O hydrogen-bonded complexes. J Phys Chem A 97(30):7899–7909

  17. Steiner T, Lutz B, van der Maas J, Schreurs AM, Kroon J, Tamm M (1998) Very long C-H··· O contacts can be weak hydrogen bonds: experimental evidence from crystalline [Cr (CO) 3 {η 6-[7-exo-(C [triple bond, length half m-dash] CH) C7 H7]}]. Chem Commun 2:171–172

    Article  Google Scholar 

  18. Seiler P, Weisman GR, Glendening ED, Weinhold F, Johnson VB, Dunitz JD (1987) Observation of an eclipsed C-CH3 bond in a tricyclic orthoamide; experimental and theoretical evidence for C-H⋯O hydrogen bonds. Angew Chem Int Ed 26(11):1175–1177

    Article  Google Scholar 

  19. Thakur TS, Kirchner MT, Bläser D, Boese R, Desiraju GR (2010) C-H⋯F–C hydrogen bonding in 1, 2, 3, 5-tetrafluorobenzene and other fluoroaromatic compounds and the crystal structure of alloxan revisited. CrystEngComm 12(7):2079–2085

    Article  CAS  Google Scholar 

  20. Saha S, Rajput L, Joseph S, Mishra MK, Ganguly S, Desiraju GR (2015) IR spectroscopy as a probe for C-H⋯ X hydrogen bonded supramolecular synthons. CrystEngComm 17(6):1273–1290

    Article  CAS  Google Scholar 

  21. Hunter CA (1994) Meldola lecture. The role of aromatic interactions in molecular recognition. Chem Soc Rev 23(2):101–109

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA , Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralata JE, Olgiaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghvachari K, Rendell A, Burrant JC, Iyengar SS, Tomasi J, Cossi M, Raga N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz VJ, Cioslowski, Fox DJ (2010) Gaussian Inc, Wallingford CT Gaussian 09, Revision C01

  23. Lee C, Yang W, Parr RG (1988) Results obtained with the correlation energy density functionals. Phys Rev B Condens Matter 37:785

    Article  CAS  PubMed  Google Scholar 

  24. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77(7):3654–3665

  25. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21+ G basis set for first-row elements. J Comput Chem 4(3):294–301

  26. Dickson RM, Becke AD (1993) Basis-set-free local density functional calculations of geometries of polyatomic molecules. J Chem Phys 99(5):3898–3905

    Article  CAS  Google Scholar 

  27. Gordon MS (1980) The isomers of silacyclopropane. Chem Phys Lett 76(1):163–168

    Article  CAS  Google Scholar 

  28. Jensen F (2007) Introduction to computational chemistry. Angew Chem Int Ed

  29. Frisch A, Nielsen AB, Holder AJ (2001) Gauss View molecular visualization program. Gaussian Inc, Gaussian user manual

    Google Scholar 

  30. Fukui K (1981) The path of chemical reactions-the IRC approach. Acc Chem Res 14(12):363–368

    Article  CAS  Google Scholar 

  31. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

    Article  CAS  PubMed  Google Scholar 

  32. Bader R (1990) Atoms in molecules: a quantum theory: Oxford Univ. Press, Oxford

    Google Scholar 

  33. Zlotin G, Kislitsin G, Samet V, Serebryakov A, Konyushkin D, Semenov VV, Gakh AA (2000) Synthetic utilization of polynitroaromatic compounds. 1. S-derivatization of 1-substituted 2, 4, 6-trinitrobenzenes with thiols. J Organomet Chem 65(25):8430–8438

  34. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161

    Article  CAS  Google Scholar 

Download references

Funding

Funding is provided by Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib.

Author information

Authors and Affiliations

Authors

Contributions

Amanjot and Kulvinder Singh done the basic studies and helped with manuscript preparation, Amrit Singh and Pratibha Sharma performed computational evaluation of data and edited the manuscript, Amritpal Singh and Raj Kumar decided the problem for the present research work, Manish Dev Sharma provided the platform to perform Gaussian software calculations for the present work, and Amandeep Saroa performed computational evaluation of data and also wrote and edited the manuscript.

Corresponding author

Correspondence to Amandeep Saroa.

Ethics declarations

Ethics approval

All procedures performed in studies were in accordance with the ethical standards.

Consent to participate

Not applicable.

Consent for publication

All authors give consent to publish the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 708 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanjot, Kumar, R., Singh, A. et al. Comparative computational studies for nucleophilic aromatic substitution of dinitro-substituted benzannulated heterocycles with 1H-1,2,3-triazole. Struct Chem 34, 505–517 (2023). https://doi.org/10.1007/s11224-022-01993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01993-1

Keywords

Navigation