Skip to main content
Log in

Exploring the effect of complexant on remarkably high static and dynamic second hyperpolarizability of aziridine-based diffuse electron systems: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Effects of complexant number on static and dynamic second hyperpolarizability of diffuse electron systems comprising aziridine (complexant) and alkaline earth metal dopant (i.e., Be, Mg, and Ca) are explored theoretically. Accordingly, the number of the complexant is increased up to three in a stepwise fashion. Aziridine unit, which is non-covalently linked with dopant, polarizes the ns electron of dopant. This polarizing effect results in higher second hyperpolarizability value of the complexes. Compared to pristine aziridine moiety, the γavg of Be-aziridine complex enhances significantly. Interestingly, with increase in complexant number, the static and dynamic second hyperpolarizability values enhance monotonically and attain the maximum value when three complexants are employed. Among the studied systems, the shamrock-shaped complex (Ca@(aziridine)3) exhibits higher non-linear refractive index as well as remarkably high second hyperpolarizability value (1.83 × 107 au).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

N/A.

Code availability

N/A.

References

  1. (a) Bennion I, Goodwin MJ (1993) Third-order nonlinear guided-wave optical devices. In:R.W. Eason, A. Miller (eds) Nonlinear optics in signal processing. Engineering Aspects of Lasers Series, 49. Springer, Dordrecht. (b) Zyss J (1994) Molecular Nonlinear Optics: Materials, Physics and Device, Academic Press, New York

  2. Maidur SR, Patil PS, Katturi NK, Soma VR, Wong QA, Quah CK (2021) Ultrafast nonlinear optical and structure–property relationship studies of pyridine-based anthracene chalcones using ZScan, degenerate four-wave mixing and computational approaches. J Phys Chem B 125(15):3883–3898

    Article  CAS  PubMed  Google Scholar 

  3. Chu S, Wang S, Gong Q (2012) Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film. Chem Phys Lett 523:104–106

    Article  CAS  Google Scholar 

  4. Gauthier N, Argouarch G, Paul F, Toupet L, Ladjarafi A, Costuas K, Halet JF, Samoc M,Cifuentes MP, Corkery TC, Humphrey MG (2011) Electron-rich iron/ruthenium arylalkynyl complexes for third-order nonlinear optics: redox-switching between three states. Chem – Eur J 17:5561–5577

  5. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects Chem Rev 9(1):195–242

    Google Scholar 

  6. Dye JL (1990) Ionic salts with electrons as the anions. Science 247(4943):663–668

    Article  CAS  PubMed  Google Scholar 

  7. Huang RH, Dye JL (1990) Low temperature (−80 °C) thermionic electron emission from alkalides and electrides. Chem Phys Lett 166:133–136

  8. Guan S, Huang SY, Yao Y, Yang SA (2017) Tunable hyperbolic dispersion and negative refraction in natural electride materials. Phys Rev B 95:165436

    Article  Google Scholar 

  9. (a) Ye T-N, Li J, Kitano M, Hosono H (2017) Unique nanocages of 12CaO·7Al2O3 boost heterolytic hydrogen activation and selective hydrogenation of heteroarenes over ruthenium catalyst. Green Chem 19:749–756. (b) Toda Y, Hirayama H, Kuganathan N, Torrisi A, Sushko PV, Hosono H (2013) Activation and Splitting of Carbon Dioxide on the Surface of an Inorganic Electride Material. Nat Commun 4:2378

  10. Roy RS, Nandi PK (2018) Electronic structure and large secondorder non-linear optical property of COT derivatives – a theoretical exploration. Phys Chem Chem Phys 2018:744–18755

    Google Scholar 

  11. Sun W-M, Li X-H, Wu J, Lan J-M, Li C-Y, Wu D, Li Y, Li Z-R (2017) Can coinage metal atoms be capable of serving as an excess electron source of alkalides with considerable nonlinear optical responses? Inorg Chem 56:4594–4600

    Article  CAS  Google Scholar 

  12. Roy RS, Ghosh S, Hatua K, Nandi PK (2021) Superalkali-doped borazine and lithiated borazine complexes: diffuse excess electron and large first-hyperpolarizability. J Mol Model 27:74

    Article  CAS  PubMed  Google Scholar 

  13. Li Z-J, Wang F-F, Li Z-R, Xu H-L, Huang X-R, Wu D, Chen W, Yu G-T, Guz FL, Aoki Y (2009) Large static first and second hyperpolarizabilities dominated by excess electron transition for radical ion pair salts M2+TCNQ+. (M = Li, Na, K). Phys Chem Chem Phys 11:402–408

    Article  CAS  PubMed  Google Scholar 

  14. Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, Hosono H (2003) High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-). Science 301:626–629

    Article  CAS  PubMed  Google Scholar 

  15. Kim SW, Toda Y, Hayashi K, Hirano M, Hosono H (2006) Synthesis of a room temperature stable 12CaO·7Al2O3 electride from the melt and its application as an electron field emitter. Chem Mater 18:1938–1944

    Article  CAS  Google Scholar 

  16. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim SW, Hara M, Hosono H (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4:934–940

    Article  CAS  PubMed  Google Scholar 

  17. (a) Zhu L, Xue K, Hou J (2019) A theoretical study of alkaline-earthides Li(NH3)4M (M = Be, Mg, Ca)with large first hyperpolarizability. J Mol Model 25:150. (b) Chen W, Li ZR, Wu D, Li RY, Sun CC (2005) Theoretical investigation of the large nonlinear optical properties of (HCN)n clusters with Li atom. J Phys Chem B 109: 601–08. (c) Kuniyil MJK, Padmanaban R (2019) Theoretical insights into the structural, photophysical and nonlinear optical properties of phenoxazin-3-one dyes. New J Chem 43:13616–13629. (d) Sun W-M, Chen C-Y, Li C-Y, Wu D, Kang J, Li Y, Li Z-R (2018) Boron-substituted coronene: intriguing geometric and electronic properties, and large nonlinear optical response. Chem Phys Chem 19:2518–2524. (d) Avramopoulos A, Reis H, Li J, Papadopoulos MG (2004) The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study. J Am Chem Soc 126(19):6179–6184. (e) Karamanis P, Pouchan C (2013) Second-hyperpolarizability (γ) enhancement in metal-decorated zigzag graphene flakes and ribbons: the size effect. J Phys Chem C 117(6):3134–3140. (f) Karamanis P, Pouchan C (2012) Fullerene–C60 in contact with alkali metal clusters: prototype nano-objects of enhanced first hyperpolarizabilities. J Phys Chem C 116(21):11808–11819

  18. (a) Sun W-M, Li X-H, Li Y, Ni B-L, Chen J-H, Li C-Y, Wu D, Li Z-R (2016) Theoretical study of the substituent effects on the nonlinear optical properties of a room-temperature-stable organic electride. Chem Phys Chem 17:3907–3915-Li. (b) Kulichenko M, Utenyshev AN, Bozhenko KV (2021) Designing molecular electrides from defective unit cells of cubic alkaline earth oxides. J Phys Chem C 125:9564–9570. (c) Ishaq M, Shehzad RA, Yaseen M, Iqbal S, Ayub K, Iqbal J (2021) DFT study of superhalogen-doped borophene with enhancednonlinear optical properties. J Mol Model 27:188. (d) Das P, Chattaraj PK (2021) Electride characteristics of M25-E5)2 (M = Be, Mg; E = Sb5-) Structural Chemistry 32:2107–2114

  19. (a) Pielak K, Tonnelé C, Sanguinet L, Cariati E, Righetto S, Muccioli L, Castet F, Champagne B (2018) Dynamical behavior and second harmonic generation responses in acido-triggered molecular switches. J Phys Chem C 122(45):26160–26168. (b) Castet F,Rodriguez V, Pozzo J-L, Ducasse L, Plaquet A, Champagne B (2013) Design and characterization of molecular nonlinear optical switches. Acc Chem Res 46(11):2656–2665. (c) Bhattacharyya S, Mukherjee PK, Fricke B (2020) Nonlinear response properties of atomic hydrogen under quantum plasma environment: a time-dependent variation perturbation study on hyperpolarizability and two-photon excitations. Int J Quantum Chem 120:e26422. (d) Shakerzadeh E, karbasiyuon M (2019) Electro-optical properties of bowl-like B36 cluster doped with the first row transition metals: a DFT insight. Phys E Low-Dimens Syst Nanostructures 114:113599. (e) Shakerzadeh E, Duong LV, Tahmasebi E, Nguyen MT (2019) The scandium doped boron cluster B27Sc2+: a fruit can-like structure. Phys Chem Chem Phys 21:8933–8939

  20. (a) Marques S, Castro MA, Leão SA, Fonseca TL (2018) Electronic and vibrational hyperpolarizabilities of lithium substituted (Aza)benzenes and (Aza)naphthalenes. J Phys Chem A 122(37):7402–7412. (b) Jin Y, Maroulis G, Kuang X, Ding L, Lu C, Wang J, Lv J , Zhang C, Ju M (2015) Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: SnQ (n = 3–20, Q = 0, ±1). Phys Chem Chem Phys 17:13590-13597

  21. Champagne B, Spassova M, Jadin JB, Kirtman B (2002) Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains. J Chem Phys 116:3935–3946

    Article  CAS  Google Scholar 

  22. Wang JJ, Zhou ZJ, Bai Y, Liu ZB, Li Y, Wu D, Chen W, Li ZR, Sun CC (2012) The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property. J Mater Chem 22:9652–9657

    Article  CAS  Google Scholar 

  23. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL, Aoki Y (2006) Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependence. J Am Chem Soc 128:1072–1073

    Article  CAS  PubMed  Google Scholar 

  24. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. J Am Chem Soc 129:2967–2970

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Xu C, Xu X, Zhu C, Gu FL (2017) Remarkable nonlinear optical response of excess electron compounds: theoretically designed alkali-doped aziridine M–(C2NH5)n. Phys Chem Chem Phys 19:23951

    Article  CAS  PubMed  Google Scholar 

  26. Zhou ZJ, Liu ZB, Li ZR, Huang XR, Sun CC (2011) Shape effect of graphene quantum dots on enhancing second-order nonlinear optical response and spin multiplicity in NH2–GQD–NO2 systems. J Phys Chem C 115:16282–16286

    Article  CAS  Google Scholar 

  27. Zhong RL, Xu HL, Sun SL, Qiu YQ, Su ZM (2012) The excess electron in a boron nitride nanotube: pyramidal NBO charge distribution and remarkable first hyperpolarizability. Chem Eur J 18:11350–11355

  28. Muhammad S, Xu HL, Liao Y, Kan YH, Su ZM (2009) Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131:11833–11840

    Article  CAS  PubMed  Google Scholar 

  29. Wang FF, Li ZR, Wu D, Wang BQ, Li Y, Li ZJ, Chen W, Yu GT, Gu FL, Aoki Y (2008) Structures and considerable static first hyperpolarizabilities: new organic alkalides (M+@n6adz)M′− (M, M′= Li, Na, K; n = 2, 3) with cation inside and anion outside of the cage complexants. J Phys Chem B 112:1090–1094

    Article  CAS  PubMed  Google Scholar 

  30. Jing Y-Q, Li Z-R, Wu D, Li Y, Wang B-Q, Gu FL, Aoki Y (2006) Effect of the complexant shape on the large first hyperpolarizability of alkalides Li+(NH3)4M-. Chem Phys Chem 7:1759–1763

    Article  CAS  PubMed  Google Scholar 

  31. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@ Calix[4]pyrrole. J Am Chem Soc 127:10977–10981

    Article  CAS  PubMed  Google Scholar 

  32. Jing YQ, Li ZR, Wu D, Li Y, Wang BQ, Gu FL (2006) What is the role of the complexant in the large first hyperpolarizability of sodide systems Li(NH3)nNa (n = 1–4)?. J Phys Chem B 110:11725–11729

  33. (a) Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242. (b) Huang H, Deng G, Liu J, Wu J, Si P, Xu H, Bo S, Qiu L, Zhen Z, Liu X (2013) A nunchaku-like nonlinear optical chromophore for improved temporal stability of guest–host electro-optic materials. Dyes Pigm 99:753–758

  34. (a) Wang CH, Ma NN, Sun XX, Sun SL, Qiu YQ, Liu PJ (2012) Modulation of the second- order nonlinear optical properties of the two-dimensional pincer Ru(II) complexes: substituent effect and proton abstraction switch. J Phys Chem A 116:10496–10506. (b) Zhang MY, Wang CH, Wang WY, Ma NN, Sun SL, Qiu YQ (2013) Strategy for enhancing second-order nonlinear optical properties of the Pt(II) dithienylethene complexes: substituent effect, π-conjugated influence, and photoisomerization switch. J Phys Chem A 117:12497–12510

  35. Redko MY, Jackson JE, Huang RH, Dye JL (2005) Design and synthesis of a thermally stable organic electride. J Am Chem Soc 127:12416–12422

    Article  CAS  PubMed  Google Scholar 

  36. Huang RH, Faber MK, Moeggenborg KJ, Ward DL, Dye JL (1988) Structure of K+(cryptand[2.2.2J) electride and evidence for trapped electron pairs. Nature 331:599–601

  37. Ellaboudy A, Dye JL, Smith PB (1983) Cesium 18-crown-6 compounds. A crystalline ceside and a crystalline electride. J Am Chem Soc 105:6490–6491

  38. Singh GS (2016) Synthetic aziridines in medicinal chemistry: a mini-review. Mini Rev Med Chem 16:892–904

    Article  CAS  PubMed  Google Scholar 

  39. Degennaro L, Trinchera P, Luisi R (2014) Recent advances in the stereoselective synthesis of aziridines. Chem Rev 114:7881–7929

    Article  CAS  PubMed  Google Scholar 

  40. He H-M, Li Y, Yang H, Yu D, Li S-Y, Wu D, Hou J-H, Zhong R-L, Zhou Z-J, Gu F-L, Luis JM, Li Z-R (2017) Efficient external electric field manipulated nonlinear optical switches of all metal electride molecules with infrared transparency: nonbonding electron transfer forms an excess electron lone pair. J Phys Chem C 121:958–968

    Article  CAS  Google Scholar 

  41. He H-M, Li Y, Sun W-M, Wang J–J, Wu D, Zhong R–L, Zhou Z–J, Li Z–R, (2016) All-metal electride molecules CuAg@Ca7M (M = Be, Mg, and Ca) with multi-excess electrons and allmetal polyanions: molecular structures and bonding modes as well as large infrared nonlinear optical responses. Dalton Trans 45:2656–2665

    Article  CAS  PubMed  Google Scholar 

  42. (a) Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98: 5648–5652(b) Lee C,Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37: 785–789

  43. Hunter EP, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27:413

    Article  CAS  Google Scholar 

  44. Saeidian H,Barfinejad E,Vessally E (2020) Effect of aromaticity and ring strain on proton affinity of aziridine and amidine skeletons: a DFT study. J Iran Chem Soc17 : 1731–1741

  45. Patra SG (2019) Basicity of N-heterocyclic carbene and its main-group analogues. Comput Theor Chem 1164:112557

    Article  Google Scholar 

  46. Khalili G, McCosker PM, Clark T, Keller PA (2019) Synthesis and density functional theory studies of azirinyl and oxiranyl functionalized isoindigo and (3Z,3’Z)-3,3’-(ethane-1,2-diylidene)bis(indolin-2-one) Derivatives. Molecules 24:3649

    Article  PubMed  PubMed Central  Google Scholar 

  47. (a) Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19 : 553–566. (b) Hobza P, Havlas Z (1998) Counterpoise-corrected potential energy surfaces of simple H-bonded systems. Theor Chem Acc 99:372–377

  48. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  49. Keith T (2017) AIMAll (Version 17.01.25); TK Gristmill Software: Overland Park, KS

  50. a) Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2004) Second harmonic generation second hyperpolarizability of water calculated using the combined coupled cluster dielectric continuum or different molecular mechanics methods. J Chem Phys 120:3787−3798. (b) Muhammad S, Chaudhry AR, Irfan A, Al-Sehemi AG (2017) First-principles study of nitrogen-doped nanographene as an efficient charge transport and nonlinear optical material. RSC Adv 7:36632-36643

  51. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange−correlation functional using the Coulomb-attenuating method (CAMB3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  52. Srivastava AK (2021) Lithiated graphene quantum dot and its nonlinear optical properties modulated by a single alkali atom: a theoretical perspective. Inorg Chem 60(5):3131–3138

    Article  CAS  PubMed  Google Scholar 

  53. Wang S-J, Li Y, Wang Y-F, Wu D, Li Z-R (2013) Structures and nonlinear optical properties of the endohedral metallofullerene-superhalogen compounds Li@C60–BX4 (X = F, Cl, Br). Phys Chem Chem Phys 15:12903–12910

    Article  CAS  PubMed  Google Scholar 

  54. SunW-M WuD, Li Y, Liu J-Y, He H-M, Li Z-R (2015) A theoretical study on novel alkaline earth-based excess electron compounds: unique alkalides with considerable nonlinear optical responses. Phys Chem Chem Phys 17:4524–4532

    Article  Google Scholar 

  55. Chai JD, Gordon MH (2008) Long-range corrected hybrid density functionals with damped atom–atomdispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  56. Champagne B, Botek E, Nakano M, Nitta T, Yamaguchi K (2005) Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems. J Chem Phys 122:114315–114312

    Article  PubMed  Google Scholar 

  57. Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) Second hyperpolarizability (γ) of singlet diradical system: dependence of γ on the diradical character. J Phys Chem A 109:885–891

    Article  CAS  PubMed  Google Scholar 

  58. Jensen F ( 2001) Polarization consistent basis sets: principles. J Chem Phys 115:9113–125

  59. Roy RS, Mondal A, Nandi PK (2017) First hyperpolarizability of cyclooctatetraene modulated by alkaliand alkaline earth metals. J Mol Model 23:93

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr.JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT USA

  61. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyser. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  62. (a) Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) Gas-phase ion and neutral thermochemistry. J Phys Chem Ref Data 17(1). (b) Lide DR (2000) CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL

  63. Tarazkar M, Romanov DA, Levis RJ (2014) Higher-order nonlinearity of refractive index: the case of argon. J Chem Phys 140:214316

    Article  PubMed  Google Scholar 

  64. Bree C, Demircan A, Steinmeyer G (2010) Method for computing the nonlinear refractive index via Keldysh theory. IEEE J Quantum Electron 46:433–437. (b) Ullah F, Ayub K, Mahmood T (2020) Remarkable second and third order nonlinear optical properties of organometallic C6Li6–M3O electrides. New J Chem 44:9822–9829

  65. (a) Sun W-M, Fan L-T, Li Y, Liu J-Y, Wu D, Li Z-R (2014) On the potential application of superalkali clusters in designing novel alkalides with large nonlinear optical properties. Inorg Chem 53:6170−6178. (b) Sutradhar T, Misra A (2021) Theoretical study on the nonlinear optical property of boronnitride nanoclusters functionalized by electron donating and electron accepting groups. J Phys Chem A 125:2436−2445

  66. (a) Lee W-H, Cho M, Jeon S-J, Cho BR (2000) Two-photon absorption and second hyperpolarizability of the linear quadrupolarmolecule. J Phys Chem A 104:11033-11040. (b) Banerjee P, Nandi PK (2018) Hydrides, alkalides, and halides of calcium metal chain: electronic structure and NLO property. Struct Chem 29:859–870

Download references

Acknowledgements

RSR acknowledges CSIR (file number: 09/080(1150)/2020-EMR-I) for the fellowship. The authors are also thankful to Tanay Debnath for his helpful discussion.

Funding

RSR is grateful to CSIR for research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the present work by giving their own conception and design. The computational tasks, tabulation of results, and appropriate theoretical justification/analysis were performed by Ria Sinha Roy, Avik Ghosh, Tamalika Ash, and Soumadip Banerjee. The manuscript in the final form was checked and prepared by Ria Sinha Roy and Abhijit K. Das. All authors gave their specific scientific inputs and suggestions to improve the quality of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhijit K. Das.

Ethics declarations

Ethics approval and consent to participate

N/A.

Consent for publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3805 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R.S., Ghosh, A., Ash, T. et al. Exploring the effect of complexant on remarkably high static and dynamic second hyperpolarizability of aziridine-based diffuse electron systems: a theoretical study. Struct Chem 34, 539–551 (2023). https://doi.org/10.1007/s11224-022-01989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01989-x

Keywords

Navigation