Skip to main content
Log in

Effects of N-substitution on CO2 trapping by cyclic vinylidenes at DFT levels

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Carbenes are anticipated to interact with different greenhouse gases including CH4, N2O, CO2, etc. Here, CO2 trapping of singlet (s) and triplet (t) 4-vinylidencyclopentene minima (1s and 1t) are compared and contrasted with their various N-substituted analogs, with different types of topology (2s-9s and 2t-9t, respectively), at M06-2X/6–311 +  + G** level of theory. In the first step, spontaneous non-covalent adsorption of CO2, without any transition state (TS), over singlet 1s-9s, and triplet 1t-9t, gives exothermic CO2-adducts 1s(a)-9s(a) and 1t(a)-9t(a), respectively. In the second step, the adsorbed CO2 interacts covalently with the carbene moiety of singlet 1s(a)-9s(a), and forms reactant-like, three-membered cyclic TSs that convert to their corresponding singlet 1s(b)-9s(b) exothermically. Alternatively, CO2 intramolecular reactions within triplet 1t-9t results in formation of the reactant-like TSs, which lead to the exothermic formation of triplet 1t(b)-9t(b). Singlet cyclic vinylidenes (1s-9s, with trapping energy range, Etrp =  − 19.85 to − 40.34 kcal mol−1) are better CO2 trappers than their triplet spin isomers (1t-9t, with Etrp =  + 1.34 to − 10.13 kcal mol−1). The best singlet and triplet trappers appeared to be Arduengo type 4s and 4t with Etrp values of − 40.34 and − 10.13 kcal mol−1, respectively. The ease of CO2 trapping by the scrutinized singlet and triplet vinylidenes is: 4s > 7s > 9s > 2s > 5s > 6s > 8s > 1s > 3s > 4t > 3t > 7t > 6t > 5t > 9t > 2t > 8t > 1t. The AIM results appear consistent with above trend and our proposed mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2

Similar content being viewed by others

References

  1. Liu Q, Wu L, Jackstell R, Beller M (2015) Nat Commun 6:5933–5948

    Article  PubMed  Google Scholar 

  2. Paul HM (2016) Feron. Absorption–based post–combustion capture of carbon dioxide. Elsevier, Amsterdam, 1st ed

  3. Suib SL (2013) New and future developments in catalysis, 1st edn. Activation of carbon dioxide. Elsevier, Amsterdam

    Google Scholar 

  4. Yang L, Wang H (2014) Chemsuschem 7:962–998

    Article  CAS  PubMed  Google Scholar 

  5. Buβ F, Mehlmann P, Mück-Lichtenfeld C, Bergarder K, Dielmann F (2016) J Am Chem Soc 138:1840–1843

    Article  Google Scholar 

  6. Villiers C, Dognon J-P, Pollet R, Thuéry P, Ephritikhine M (2010) Angew Chem Int Ed 49:3465–3468

    Article  CAS  Google Scholar 

  7. Kayaki Y, Yamamoto M, Ikariya T (2009) Angew Chem Int Ed 48:4194–4197

    Article  CAS  Google Scholar 

  8. Zhou H, Zhang WZ, Liu CH, Qu JP, Lu XB (2008) J Organ Chem 73(20):8039-8044

  9. Khorshidvand N, Kassaee MZ, Safaei S (2020) Res Chem Intermed 46:2289–2308

    Article  CAS  Google Scholar 

  10. Montero-Campillo MM, Alkorta I, Elguero J (2018) Phys Chem Chem Phys 20:19552–19559

    Article  CAS  PubMed  Google Scholar 

  11. Ajitha MJ, Suresh CH (2012) J Org Chem 77:1087–1094

    Article  CAS  PubMed  Google Scholar 

  12. Logdi R, Bag A, Tiwari AK (2019) J Mol Graph and Mod 93:107437–107446

    Article  CAS  Google Scholar 

  13. Vogt M, Bennett JE, Huang Y, Wu C, Schneider WF, Brennecke JF, Ashfeld BL (2013) Chem - A Eur J 19:11134–11138

    Article  CAS  Google Scholar 

  14. Kuhn N, Steimann M, Weyers G (1999) Z Naturforsch 54:434–440

    Article  CAS  Google Scholar 

  15. Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J (2009) J Org Chem 74:7935–7942

    Article  PubMed  Google Scholar 

  16. Alkorta I, Blanco F, Dobado A, Ferrer SM (2009) J Phys Chem A 113:8387–8393

    Article  CAS  PubMed  Google Scholar 

  17. Alkorta I, Montero-Campillo MM, Elguero J (2017) Chem - A Eur J 23:10604–10609

    Article  CAS  Google Scholar 

  18. Denning DM, Falvey DE (2014) J Org Chem 79:4293–4299

    Article  CAS  PubMed  Google Scholar 

  19. Denning DM, Falvey DE (2017) J Org Chem 82:1552–1557

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Kosekl S, Matsunaga N, Nguyen KA, Su S, Windus TL, Duplus M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  21. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  22. Valero R, Gomes JRB, Truhlar DG, lllas F (2008) J Chem Phys 129:124710–124723

  23. Soleimani Purlak N, Kassaee MZ (2020) J Phys Org Chem 33:e4053

  24. Ayoubi-Chianeh M, Kassaee MZ (2020) J Chinese Chem Soc 67:692–702

    Article  CAS  Google Scholar 

  25. Seif A, Ebrahimi S, Vessally E, Goodarzi M (2013) Struct Chem 24:1737–1745

    Article  CAS  Google Scholar 

  26. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  27. Bader RFW, Nguyen-Dang TT (1981) Adv Quantum Chem 14:63–124

    Article  CAS  Google Scholar 

  28. Keith TA (2010) AIMAll (version 10.07.25), https://www.aim.tkgristmill.com

  29. Siegelman RL, Milner PJ, Forse AC, Lee JH, Colwell KA, Neaton JB, Reimer JA, Weston SC, Long JR (2019) J Am Chem Soc 141:13171–13186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li X, Guo T, Zhu L, Ling C, Xue Q, Xing W (2018) Chem Eng J 338:92–98

    Article  CAS  Google Scholar 

  31. Arduengo AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  32. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  33. Seif A, Bagherzadeh R, Goodarzi M, Azizi K (2013) J Chem Sci 125:1277–1284

    Article  CAS  Google Scholar 

  34. Del Bene JE, Alkorta I, Elguero J (2017) J Phys Chem 121:4039–4047

    Article  Google Scholar 

Download references

Acknowledgements

The support from Tarbiat Modares University (TMU) is gratefully acknowledged.

Funding

This study is financially supported by Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Contributions

Shadi Soroudi. Mohamad Zaman Kassaee.

Corresponding author

Correspondence to Mohamad Zaman Kassaee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4878 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soroudi, S., Kassaee, M.Z. Effects of N-substitution on CO2 trapping by cyclic vinylidenes at DFT levels. Struct Chem 34, 467–476 (2023). https://doi.org/10.1007/s11224-022-01977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01977-1

Keywords

Navigation