Skip to main content
Log in

The influence of a single water molecule on the reaction of IO + HONO

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Depending on the IO approaches the configuration of HONO, two different H-extraction pathways (IO + cis-HONO and IO + trans-HONO) were located at the CCSD(T)//ωB97X-D level. With the introduction of single water molecule, nine pathways were investigated for the IO + HONO reaction. The computed results manifested that the barriers of Pathway W11, Pathway W12, Pathway W21A, Pathway W21B, Pathway W22B, and Pathway W23 are reduced by 0.39, 3.05, 8.14, 12.63, 13.13, and 10.02 kcal/mol, respectively. The rate coefficients of the reaction of IO + cis-HONO and IO + trans-HONO at 298.15 K in the existence of water are 5.98 × 10−13 and 4.93 × 10−11 cm−3 molecule−1 s−1, which are lower than the corresponding reactions in the absence of water (1.14 × 10−14 and 1.39 × 10−19 cm−3 molecule−1 s−1). To further comprehend the influence of H2O on the IO + HONO reaction, the effective rate coefficients were computed through taking account on the water concentration. The effective rate coefficients of the IO + trans-HONO reaction are much larger than the IO + trans-HONO reaction in the absence of water, 'as water molecule could cause the inhibition of the IO + cis-HONO reaction. In contrast to the IO + HONO reaction with water-free, the feasible reaction is the IO + trans-HONO instead of the IO + cis-HONO reaction. The current investigation proved that water possesses positive influence on the IO + trans-HONO reaction, which could devote to the degradation of HONO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability (software application or custom code)

Yes.

References

  1. Anglada JM, Hoffman GJ, Slipchenko LV, Costa M, Rui-López MF, Francisco JS (2013) Atmospheric significance of water clusters and ozone-water complexes. J Phys Chem A 117:10381–10396

    Article  CAS  PubMed  Google Scholar 

  2. Buszek RJ, Francisco JS, Anglada JM (2011) Water effects on atmospheric reactions. Int Rev Phys Chem 30:335–369

    Article  CAS  Google Scholar 

  3. Sennikov PG, Ignatov SK, Schrems O (2005) Complexes and clusters of water relevant to atmospheric chemistry: H2O complexes with oxidants. Chem Phys Chem 6:392–412

    Article  CAS  PubMed  Google Scholar 

  4. Vöehringer-Martinez E, Hansmann B, Hernandez H, Francisco JS, Troe J, Abel B (2007) Water catalysis of a radical-molecule gas-phase reaction. Science 315:497–501

    Article  Google Scholar 

  5. Ali MA, Balaganesh M, Lin KC (2018) Catalytic effect of a single water molecule on the OH + CH2NH reaction. Phys Chem Chem Phys 20:4297–4307

    Article  Google Scholar 

  6. Chu H, Wu W, Shao Y, Zhang Y, Cheng Y, Chen F, Liu J, Sun J (2018) A quantum theory investigation on atmospheric oxidation mechanisms of acrylic acid by OH radical and its implication for atmospheric chemistry. Environ Sci Pollut Res 25:24939–24950

    Article  CAS  Google Scholar 

  7. Jara-Toro RA, Hemandez FJ, Taccone RA, Lane SI, Pino GA (2017) Water catalysis of the reaction between methanol and OH at 294 K and the atmospheric implication. Angew Chem Int Ed 56:2166–2170

    Article  CAS  Google Scholar 

  8. Jara-Toro RA, Hemandez FJ, Garavagno MLA, Taccone RA, Pino GA (2018) Water catalysis of the reaction between hydroxyl radicals and linear saturated alcohols (ethanol and n-propanol) at 294 K. Phys Chem Chem Phys 20:27885–27896

    Article  CAS  PubMed  Google Scholar 

  9. Tang S, Tsona NT, Li J, Du L (2018) Role of water on the H-abstraction from methanol by ClO. J Environ Sci 71:89–98

    Article  CAS  Google Scholar 

  10. Thomsen DL, Kurten T, Jorgensen S, Wallington TJ, Baggesen SB, Aalling C, Kjaergaard HG (2012) On the possible catalysis by single water molecules of gas-phase hydrogen abstraction reactions by OH radicals. Phys Chem Chem Phys 14:12992–12999

    Article  CAS  PubMed  Google Scholar 

  11. Zhang W, Du B, Qin Z (2014) Catalytic effect of water, formic acid, or sulfuric acid on the reaction of formaldehyde with OH radicals. J Phys Chem A 118:4797–4807

    Article  CAS  PubMed  Google Scholar 

  12. Du B, Zhang W (2013) Theoretical study on the water-assisted reaction of NCO with HCHO. J Phys Chem A 117:6883–6892

    Article  CAS  PubMed  Google Scholar 

  13. Iuga C, Raul Alvarez-Idaboy J, Reyes L, Vivier-Bunge A (2010) Can a single water molecule really catalyze the acetaldehyde plus OH reaction in tropospheric conditions? J Phys Chem Lett 1:3112–3115

    Article  CAS  Google Scholar 

  14. Li C, Chen JW, Xie HB, Zhao YH, Xia DM, Xu T, Li XH, Qiao XL (2017) Effects of atmospheric water on OH-initiated oxidation of organophosphate flame retardants: A DFT investigation on TCPP. Environ Sci Technol 51:5043–5051

    Article  CAS  PubMed  Google Scholar 

  15. Buszek RJ, Barker JR, Francisco JS (2012) Water Effect on the OH + HCl Reaction. J Phys Chem A 116:4712–4719

    Article  CAS  PubMed  Google Scholar 

  16. Du BN, Zhang WC (2015) The effect of (H2O)n (n=1–2) or H2S on the hydrogen abstraction reaction of H2S by OH radicals in the atmosphere. Comput Theor Chem 1069:77–85

    Article  CAS  Google Scholar 

  17. Frost GJ, Vaida V (1995) Atmospheric implications of the photolysis of the ozone-water weakly bound complex. J Geophys Res Atmos 100:18803–18809

  18. English AM, Hansen JC, Szente JJ, Maricq MM (2008) The effects of water vapor on the CH3O2 self-reaction and reaction with HO2. J Phys Chem A 112:9220–9228

    Article  CAS  PubMed  Google Scholar 

  19. Long B, Tan XF, Long ZW, Wang YB, Ren DS, Zhang WJ (2011) Theoretical studies on reactions of the stabilized H2COO with HO2 and the HO2·H2O complex. J Phys Chem A 115:6559–6567

    Article  CAS  PubMed  Google Scholar 

  20. Buszek RJ, Torrent-Sucarrat M, Anglada JM, Francisco JS (2012) Effects of a single water molecule on the OH + H2O2 reaction. J Phys Chem A 116:5821–5829

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez J, Anglada JM, Buszek RJ, Francisco JS (2011) Impact of water on the OH + HOCl reaction. J Am Chem Soc 133:3345–3353

    Article  CAS  PubMed  Google Scholar 

  22. Dunn RC, Simon JD (1992) Excited-state photoreactions of chlorine dioxide in water. J Am Chem Soc 114:4856–4860

    Article  CAS  Google Scholar 

  23. Johnsson K, Engdahl A, Ouis P, Nelander B (1992) A matrix isolation study of the water complexes of chlorine, chlorine oxides (ClOCl, OClO) and hypochlorous acid and their photochemistry. J Phys Chem 96:5778–5783

    Article  CAS  Google Scholar 

  24. Jørgensen S, Kjaergaard HG (2010) Effect of hydration on the hydrogen abstraction reaction by HO in DMS and its oxidation products. J Phys Chem A 114:4857–4863

    Article  PubMed  Google Scholar 

  25. Tao FM, Higgins K, Klemperer W, Nelson DD (1996) Structure, binding energy, and equilibrium constant of the nitric acid-water complex. Geophys Res Lett 23:1797–1800

    Article  CAS  Google Scholar 

  26. Gonzalez J, Anglada JM (2010) Gas phase reaction of nitric acid with hydroxyl radical without and with water. A theoretical investigation. J Phys Chem A 114:9151–9162

    Article  CAS  PubMed  Google Scholar 

  27. Zhang T, Wang R, Chen H, Min S, Wang Z, Zhao C, Xu Q, Jin L, Wang W, Wang Z (2015) Can a single water molecule really affect the HO2 + NO2 hydrogen abstraction reaction under tropospheric conditions? Phys Chem Chem Phys 17:15046–15055

    Article  CAS  PubMed  Google Scholar 

  28. Bao F, Li M, Zhang Y, Chen C, Zhao J (2018) Photochemical aging of Beijing urban PM2.5: HONO production. Environ Sci Technol 52:6309–6316

    Article  CAS  PubMed  Google Scholar 

  29. Li C, Chen J, Xie H-B, Zhao Y, Xia D, Xu T, Li X, Qiao X (2017) Effects of atmospheric water on OH-initiated oxidation of organophosphate flame retardants: a DFT investigation on TCCP. Environ Sci Technol 51:5043–5051

    Article  CAS  PubMed  Google Scholar 

  30. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory, experiments and applications. San Diego, CA, Academic Press

    Google Scholar 

  31. Harris GW, Carter WPL, Winer AM, Pitts JN, Platt U, Perner D (1982) Observations of nitrous acid in the Los Angeles atmosphere and implications for predictions of ozone-precursor relationships. Environ SCi Technol 16:414–419

    Article  CAS  PubMed  Google Scholar 

  32. Li G, Lei W, Zavala M, Volkamer R, Dusanter S, Stevens P, Molina LT (2010) Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign. Atmos Chem Phys 10:6551–6567

    Article  CAS  Google Scholar 

  33. Huang RJ, Yang L, Cao JJ, Wang QY, Tie XX, Ho KF, Shen ZX, Zhang RJ, Li GH, Zhu CS, Zhang NN, Dai WT, Zhou JM, Liu SX, Chen Y, Chen J, O’Dowd CD (2017) Concentration and sources of atmospheric nitrous acid (HONO) at an urban site in Western China. Sci Total Environ 593:165–172

    Article  PubMed  Google Scholar 

  34. Wang J, Zhang X, Guo J, Wang Z, Zhang M (2017) Observation of nitrous acid (HONO) in Beijing, China: seasonal variation, nocturnal formation and daytime budget. Sci Total Environ 587:350–359

    Article  PubMed  Google Scholar 

  35. Spataro F, Ianniello A, Esposito G, Allegrini I, Zhu T, Hu M (2013) Occurrence of atmospheric nitrous acid in the urban area of Beijing (China). Sci Total Environ 447:210–224

    Article  CAS  PubMed  Google Scholar 

  36. Kleffmann J (2007) Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. ChemPhysChem 8:1137–1144

    Article  CAS  PubMed  Google Scholar 

  37. Pitts JN, Biermann HW, Winer AM, Tuazon EC (1984) Spectroscopic identification and measurement of gaseous nitrous acid in dilute auto exhaust. Atmos Environ 18:847–854

    Article  CAS  Google Scholar 

  38. Kurtenbach R, Becker KH, Gomes JAG, Kleffmann J, Lörzer JC, Spittler M, Wiesen P, Ackermann R, Geyer A, Platt U (2001) Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos Environ 35:3385–3394

    Article  CAS  Google Scholar 

  39. Nakashima Y, Sadanaga Y, Saito S, Hoshi J, Ueno H (2017) Contributions of vehicular emissions and secondary formation to nitrous acid concentrations in ambient urban air in Tokyo in the winter. Sci Total Environ 592:178–186

    Article  CAS  PubMed  Google Scholar 

  40. Oswald R, Behrendt T, Ermel M, Wu D, Su H, Cheng Y, Breuninger C, Moravek A, Mougin E, Delon C, Loubet B, Pommerening-Röser A, Sörgel M, Pöschl U, Hoffmann T, Andreae MO, Meixner FX, Trebs I (2013) HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 341:1233–1235

    Article  CAS  PubMed  Google Scholar 

  41. Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner FX, Andreae MO, Cheng P, Zhang Y, Pöschl U (2011) Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333:1616–1618

    Article  CAS  PubMed  Google Scholar 

  42. Finlayson-Pitts BJ, Wingen LM, Sumner AL, Syomin D, Ramazan KA (2003) The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys 5:223–242

    Article  CAS  Google Scholar 

  43. Gutzwiller L, Arens F, Baltensperger U, Gäggeler HW, Ammann M (2002) Significance of semivolatile diesel exhaust organics for secondary HONO formation. Environ Sci Tehcnol 36:677–682

    Article  CAS  Google Scholar 

  44. Spataro F, Ianniello A (2014) Sources of atmospheric nitrous acid: State of the science, current research needs, and future prospects. J Air Waste Manag Assoc 64:1232–1250

    Article  CAS  PubMed  Google Scholar 

  45. Li X, Brauers T, Häseler R, Bohn B, Fuchs H, Hofzumahaus A, Holland F, Lou S, Lu KD, Rohrer F, Hu M, Zeng LM, Zhang YH, Garland RM, Su H, Nowak A, Wiedensohler A, Takegawa N, Shao M, Wahner A (2012) Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China. Atmos Chem Phys 12:1497–1513

    Article  Google Scholar 

  46. Pitts JN, Sanhueza E, Atkinson R, Carter WPL, Winer AM, Harris GW, Plum CN (1984) An investigation of the dark formation of nitrous-acid in environmental chambres. Int J Chem Kinet 16:919–939

    Article  CAS  Google Scholar 

  47. Finlayson-Pitts BJ (2009) Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols. Phys Chem Chem Phys 11:7760–7779

    Article  CAS  PubMed  Google Scholar 

  48. Winer AM, Biermann HW (1994) Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California South Coast air basin. Res Chem Intermed 20:423–445

    Article  CAS  Google Scholar 

  49. Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere. Theory, experiments, and applications. Academic Press: San Diego

  50. Anglada JM, Martins-Costa M, Francisco JS, Ruiz-Lopez MF (2015) Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. Acc Chem Res 48:575–583

    Article  CAS  PubMed  Google Scholar 

  51. Rasmussen TR, Brauer M, Kjaergaard S (1995) Effects of nitrous acid exposure on human mucous membranes. Am J Resp Crit Care Med 151:1504–1511

    Article  CAS  PubMed  Google Scholar 

  52. Grosjean D (1991) Atmospheric chemistry of toxic contaminants. 6. nitrosimines-dialkyl nitrosimines and nitrosomorpholine. J Air Waste Manage Assoc 41:306–311

    Article  CAS  Google Scholar 

  53. Anglada JM, Solé A (2017) The atmospheric oxidation of HONO by OH, Cl and ClO radicals. J Phys Chem A 121:9698–9707

    Article  CAS  PubMed  Google Scholar 

  54. DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation No. 12 JPL Publication. 97–4:1–266

  55. Tackett PJ, Cavender AE, Keil AD, Shepson PB, Bottenheim JW, Morin S, Deary J, Steffen A, Doerge C (2007) A study of the vertical scale of halogen chemistry in the arctic troposphere during polar sunrise at Barrow. Alaska J Geophys Res Atmos 112:D07306

    Google Scholar 

  56. Stephens CR, Shepson PB, Steffen A, Bottenheim JW, Liao J, Huey LG, Apel E, Weinheimer A, Hall SR, Cantrell C, Sive BC, Knapp DJ, Montzka DD, Hornbeook RS (2012) The relative importance of chlorine and bromine radicals in the oxidation of atmospheric mercury at Barrow, Alaska. J Geophys Res Atmos 117:D00R11

  57. Custard KD, Pratt KA, Wang S, Shepson PB (2016) Constraints on Arctic atmospheric chlorine production through measurements and simulations of Cl2 and ClO. Environ Sci Technol 50:12394–12400

    Article  CAS  PubMed  Google Scholar 

  58. Allan BJ, McFiggans G, Plane C, Coe H (2000) Observations of iodine monoxide in the remote marine boundary layer. J Geophys Res 105:14363–14369

    Article  CAS  Google Scholar 

  59. Chameides WL, Davis DD (1980) Iodine-its possible role in tropospheric photochemistry. J Geophys Res 85:7383–7398

    Article  CAS  Google Scholar 

  60. Davis D, Crawford J, Liu S, McKeen S, Bandy A, Thornton D, Rowland F, Blake D (1996) Potential impact of iodine on tropospheric levels of ozone and other critical oxidants. J Geophys Res 101:2135

    Article  CAS  Google Scholar 

  61. Alicke B, Kai H, Stutz J et al (1999) Iodine oxide in the marine boundary layer. Nature 397:572–573

    Article  CAS  Google Scholar 

  62. Saiz-Lopez A, Plane JMC (2004) Novel iodine chemistry in the marine boundary layer. Geophys Res Lett 31:L04112

    Article  Google Scholar 

  63. Vogt R, Sander R, Glasow RV, Crutzen PJ (1999) Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study. J Atmos Chem 32:375–395

    Article  CAS  Google Scholar 

  64. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc. Wallingford CT

  65. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  CAS  PubMed  Google Scholar 

  66. Anglada JM, Crehuet R, Franisco JS (2016) The stability of α-hydroperoxyalkyl radicals. Chem Eur J 22:18092–18100

    Article  CAS  PubMed  Google Scholar 

  67. Fukui K (1981) The path of chemical-reactions-the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  68. Lee YS, Kucharski SA, Bartlett RJ (1984) A coupled cluster approach with triple excitations. J Chem Phys 81:5906–5912

    Article  Google Scholar 

  69. Canneaux S, Bohr F, Henon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35:82–93

    Article  CAS  PubMed  Google Scholar 

  70. Shiroudi A, Deleuze MS (2014) Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the H abstraction pathway. J Phys Chem A 118:4593–4610

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundations of China (No. 21707062), Scientific Research Starting Foundation of Mianyang Normal University (No. QD2016A007); the Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China; and the Science and Technology Project of Sichuan Province (2020YJ0173).

Author information

Authors and Affiliations

Authors

Contributions

Yunju Zhang and Meilian Zhao contributed to the conception of the study; performed the computations, the execution, and analysis of calculations; and wrote the manuscript. Shuxin Liu contributed significantly to the analysis and wrote the manuscript. All authors have reviewed the manuscript.

Corresponding authors

Correspondence to Yunju Zhang or Shuxin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2641 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, M. & Liu, S. The influence of a single water molecule on the reaction of IO + HONO. Struct Chem 34, 565–575 (2023). https://doi.org/10.1007/s11224-022-01972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01972-6

Keywords

Navigation