Skip to main content
Log in

DFT study on reaction mechanism of di-tert-butylphenol to di-tert-butylhydroxybenzoic acid

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe–Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried out theoretical calculation studies at the M06-2X/Def2-SVP/SMD level of theory using the Gaussian 09 D.01 software package. For the reactant 2,6-di-tert-butylphenol, there is a dynamic equilibrium between the main product and side product, which can rapidly transform into each other at 160 °C by crossing the Gibbs free energy barrier of 14.1 kcal/mol. Moreover, the relative Gibbs free energy of the main product and side product is close; both of them may be observed in the experimental system. However, for 2,4-di-tert-butylphenol, the main product is thermodynamically favorable due to its lower Gibbs free energy, while the side product is kinetically favorable due to the lower activation energy barrier; the main product and the side product compete with each other. We hope the study can shed light on the Kolbe–Schmitt reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data about Cartesian coordinates is available, which is in supporting information.

References

  1. Montinari MR, Minelli S, Caterina RD (2019) Vasc Pharmacol 113:1–8

    Article  CAS  Google Scholar 

  2. Lindsey AS, Jeskey H (1957) Chem Rev 57:583–620

    Article  CAS  Google Scholar 

  3. Ferguson LN, Holmes RR, Calvin M (1950) J Am Chem Soc 72:5315

    Article  CAS  Google Scholar 

  4. Baine O, Adamson GF, Barton JW, Fitch JL, Swayampati DR, Jeskey H (1954) J Org Chem 19:510–514

    Article  CAS  Google Scholar 

  5. Cameron D, Jeskey H, Baine OT (1950) J Org Chem 15:233–236

    Article  CAS  Google Scholar 

  6. Kressirer S, Kralisch D, Stark A, Krtschil U, Hessel V (2013) Environ Sci Technol 47:5362–5371

    Article  CAS  Google Scholar 

  7. Ahn SJ, Lee YK (2013) J Ind Eng Chem 19:2060–2063

    Article  CAS  Google Scholar 

  8. Bapat DU, Patwardhan AW (2017) Chem Eng Res Des 123:317–332

    Article  CAS  Google Scholar 

  9. Hessel V, Hofmann C, Löb P, Löhndorf J, Löwe H, Ziogas A (2005) Org Process Res Dev 9:479–489

    Article  CAS  Google Scholar 

  10. Li Z, Su K (2007) J Mol Catal A-Chem 277:180–184

    Article  CAS  Google Scholar 

  11. Iijima T, Yamaguchi T (2008) Appl Catal A-Gen 345:12–17

    Article  CAS  Google Scholar 

  12. Aresta M, Quaranta E, Liberio R, Dileo C (1998) Tommasi l. Tetrahedron 54:8841–8846

    Article  CAS  Google Scholar 

  13. Kaixun C, Yan F, Xupeng C, Jian L, Hao T, Jing T (2020) Process Biochem 94:207–212

    Article  Google Scholar 

  14. Pesci L, Glueck SM, Gurikov P, Smirnova I, Faber K, Liese A (2015) FEBS J 282:1334–1345

    Article  CAS  Google Scholar 

  15. Sato M, Sakurai N, Suzuki H, Shibata D, Kino K (2015) J Mol Catal B Enzym 122:348–352

    Article  CAS  Google Scholar 

  16. Sheng X, Himo F (2021) Comput Struct Biotec 19:3176–3186

    Article  CAS  Google Scholar 

  17. Wuensch C, Schmidt N, Gross J, Grischek B, Glueck SM, Faber K (2013) J Biotechnol 168:264–270

    Article  CAS  Google Scholar 

  18. Zhang X, Ren J, Yao P, Gong R, Wang M, Wu Q, Zhu D (2018) Enzyme Microb Technol 113:37–43

    Article  CAS  Google Scholar 

  19. Shanthi B, Palanivelu K (2015) Ultrason Sonochem 27:268–276

    Article  CAS  Google Scholar 

  20. Abe K, Nakada A, Matsumoto T, Uchijyo D, Mori H, Chang HC (2021) J Org Chem 86:959–969

    Article  CAS  Google Scholar 

  21. Dessimoz AL, Berguerand C, Renken A, Kiwi-Minsker L (2012) Chem Eng J 200–202:738–747

    Article  Google Scholar 

  22. Markovic Z, Markovic S, Begovic N (2006) J Chem Inf Model 46:1957–1964

    Article  CAS  Google Scholar 

  23. Markovic Z, Markovic S, Manojlovic N, Predojevic-Simovic J (2007) J Chem Inf Model 47:1520–1525

    Article  CAS  Google Scholar 

  24. Yan X, Cheng Z, Yue Z, Yuan P (2014) Res Chem Intermediat 40:3045–3058

    Article  CAS  Google Scholar 

  25. Stanescu I, Achenie LEK (2006) Chem Eng Sci 61:6199–6212

    Article  CAS  Google Scholar 

  26. Yan X, Cheng Z, Yue Z, Yuan P (2014) Res Chem Intermediat 40:3059–3071

    Article  CAS  Google Scholar 

  27. Yan X (2013) Study on the reaction process and mechanism of synthesizing 3,6-dichloro salicylic acid by Kolbe-Schmitt reaction. East China University of Science and Technology, Shanghai

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth G A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01; Wallingford, CT: Gaussian, Inc

  29. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  30. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

  31. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  32. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  33. Gonzalez C, Schlegel B (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  34. Lu T, Chen Q (2021) Comput Theor Chem 1200:113249

  35. Legault CY (2009) CYLview, v 1.0b; Universite de Sherbrooke

Download references

Funding

N.-Z. Jin was supported by the Open Research Program of Key Laboratory of Fine Chemicals of Gansu Province and the Key Research and Development Plan of Gansu Province (No. 21YF5GA005).

Author information

Authors and Affiliations

Authors

Contributions

Neng-Zhi Jin, Qi-Bin Zhang: data analysis, writing—review and editing. Rong Liu: data analysis and discussion. Pan-Pan Zhou: calculations and data collection.

Corresponding author

Correspondence to Neng-Zhi Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 547 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, NZ., Zhang, QB., Liu, R. et al. DFT study on reaction mechanism of di-tert-butylphenol to di-tert-butylhydroxybenzoic acid. Struct Chem 33, 601–606 (2022). https://doi.org/10.1007/s11224-021-01874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01874-z

Keywords

Navigation