Skip to main content

Advertisement

Log in

Structural and energetic effect of the intramolecular hydrogen bonding in 4,6-dihaloresorcinols: ab initio calculation, vibrational spectroscopy, and molecular docking studies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The intramolecular hydrogen bonding in the series of 4,6-dihaloresorcinols (with halogen atoms being F, Cl, Br, or I) is believed to play a noticeable role in determining the structural and electronic aspects. All theoretical levels employed in this work suggested that the intramolecular O–H…X-C bonding greatly stabilizes the anti (A) configuration that is at least 5 kcal/mol more stable than the syn (S) form, where such an interaction is absent. Vibrational spectroscopic examination of the OH stretching and bending modes suggested that the dibromo derivative encounters a relatively greater extent of intramolecular hydrogen bonding interaction compared to the corresponding molecules, which is in agreement with the ab initio MP4(SDQ) results. The A ↔ AS ↔ S interconversion barriers were predicted to be in the range of 5–10 kcal/mol, with the difluoro derivative corresponding to the smallest energy barriers in the series in the gas phase. The order of the frontier molecular orbitals and electrostatic potential maps showed a consistent correlation with the size and mass down the halogen group. The calculated infrared and Raman wavenumbers were compared with the experimentally observed ones to assist systematic assignments of the vibrational modes. Molecular docking analysis suggested that the difluoro derivative shall be a potent halo-substituted resorcinol candidate in the treatment of specific types of skin inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the manuscript.

References

  1. Rodríguez E, Encinas A, Masa FJ, Beltrán FJ (2008) Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption. Chemosphere 70:1366–1374

    Article  Google Scholar 

  2. Zhang JZ, Fischer CJ (2006) A simplified resorcinol method for direct spectrophotometric determination of nitrate in seawater. Mar Chem 99:220–226

    Article  CAS  Google Scholar 

  3. Husain A, Maaz M, Ansari KA, Ahmad A, Rashid M (2010) Synthesis and microbiological evaluation of mannich bases derived from 4,6-diacetylresorcinol. J Chil Chem Soc 3:18–20

    Google Scholar 

  4. Buckingham J (1994) Dictionary of natural products. Chapman & Hall

    Google Scholar 

  5. Dressler H (1994) Resorcinol: its uses and derivatives. Springer Science + Business Media, New York

    Book  Google Scholar 

  6. Durairaj RB (2005) Resorcinol-Chemistry Technology & Applications

  7. Alaasar M, Prehm M, Tschierske C (2013) A new room temperature dark conglomerate mesophase formed by bent-core molecules combining 4-iodoresorcinol with azobenzene units. Chem Commun 49:11062–11064

    Article  CAS  Google Scholar 

  8. Onawole AT, Halim MA, Ullah N, Al-Saadi AA (2018) Structural, spectroscopic and docking properties of resorcinol, its -OD isotopomer and dianion derivative: a comparative study. Struct Chem 29:403–414

    Article  CAS  Google Scholar 

  9. Puebla C, Ha TK (1990) A theoretical study of conformations and rotational barriers in dihydroxybenzenes. J Mol Struct THEOCHEM 204:337–351

    Article  Google Scholar 

  10. Rudyk R, Molina MA, Gómez M et al (2004) Solvent effects on the structure and dipole moment of resorcinol. J Mol Struct THEOCHEM 674:7–14

    Article  CAS  Google Scholar 

  11. Imhof P, Brause R, Kleinermanns K (2002) Determination of ground state vibrational frequencies of jet-cooled resorcinol by means of dispersed fluorescence spectroscopy and ab initio calculations. J Mol Spectrosc 211:65–70

    Article  CAS  Google Scholar 

  12. Tripathi GNR (1981) Crystal spectra and vibrational assignments in α-resorcinol. J Chem Phys 74:250

    Article  CAS  Google Scholar 

  13. Robertson JM (1936) The structure of resorcinol: a quantitative X-ray investigation. Proc R Soc A Math Phys Eng Sci 157:79–99

    CAS  Google Scholar 

  14. Kovács A, Macsári I, Hargittai I (1999) Intramolecular hydrogen bonding in fluorophenol derivatives: 2-fluorophenol, 2,6-difluorophenol, and 2,3,5,6-tetrafluorohydroquinone. J Phys Chem A 103:3110–3114

    Article  Google Scholar 

  15. Han J, Deming RL, Tao F (2004) Theoretical study of molecular structures and properties of the complete series of chlorophenols. J Phys Chem A 108:7736–7743

    Article  CAS  Google Scholar 

  16. Han J, Lee H, Tao F (2005) Molecular structures and properties of the complete series of bromophenols: density functional theory calculations. J Phys Chem A 109:5186–5192

    Article  CAS  Google Scholar 

  17. Kovács A, Hargittai I (1998) Hydrogen bonding in 2-trifluoromethylresorcinol and 2,6- bis(trifluoromethyl) phenol and its geometrical consequences. J Mol Struct THEOCHEM 455:229–238

    Article  Google Scholar 

  18. Borisenko KB, Hargittai I (1993) Intramolecular hydrogen bonding and molecular structure of 2-nitroresorcinol from gas-phase electron diffraction. J Phys Chem 97:4080–4084

    Article  CAS  Google Scholar 

  19. Bock CW, Hargittai I (1994) Geometrical consequences of resonance-assisted intramolecular hydrogen-bond formation from Ab initio MO calculations on 2-nitroresorcinol. Struct Chem 5:307–312

    Article  CAS  Google Scholar 

  20. Bovicelli P, MincioneE AR, Bernini R, Colombari M (2001) Selective halogenation of aromatics by dimethyl-dioxirane and halogen ions. Synth Commun 31:2955–2963

    Article  CAS  Google Scholar 

  21. Lee BK, Yoon JH, Yoon S, Cho BK (2014) Induced eye-detectable blue emission of triazolyl derivatives via selective photodecomposition of chloroform under UV irradiation at 365 nm. Bull Korean Chem Soc 35:135–140

    Article  CAS  Google Scholar 

  22. Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441

    Article  CAS  Google Scholar 

  23. Igel-Mann G, Stoll H, Preuss H (1988) Pseudopotentials for main group elements (IIIa through VIIa). Mol Phys 65:1321–1328

    Article  CAS  Google Scholar 

  24. Shao JYY, Fusti-Molnar L, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio Jr. RA, Lochan RC, WangT, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chie SH (2011) Spartan’10 build 1.0.1. Wavefunction Inc., Irvine CA, p. Irvine CA

  25. Dennington TKR, Millam J, Dennington R, Keith T, Millam J (2009) GaussView version 5. Semichem Inc, Shawnee Mission KS

    Google Scholar 

  26. Al-Saadi AA, Laane J (2007) Ab initio and DFT calculations for the structure and vibrational spectra of cyclopentene and its isotopomers. J Mol Struct 830:46–57

    Article  CAS  Google Scholar 

  27. Knudsen T, Knudsen B (2016) CLC Drug Discovery Workbench. QIAGEN Aarhus, Denmark 1–367

  28. Kawahara S, Uchimaru T, Taira K (2001) Electron correlation and basis set effects on strong hydrogen bond behavior: a case study of the hydrogen difluoride anion. Chem Phys 273:207–216

    Article  CAS  Google Scholar 

  29. Atkins PW, Overton TL, Rourke JP, Weller MT, Armstrong FA (2010) Shriver and Atkins’ inorganic chemistry, 5th edn. Oxford University Press

    Google Scholar 

  30. Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. John Wiley and Sons Inc

  31. Michalska D, Bienko DC, Abkowicz-Bienko AJ, Latajka Z (1996) Density functional, Hartree-Fock, and MP2 studies on the vibrational spectrum of phenol. J Phys Chem 100:17786–17790

    Article  CAS  Google Scholar 

  32. Popoola SA (2018) Spectroscopic study of 2-methylindole and 3-methylindole: Solvents interactions and DFT studies. Spectrochim Acta A Mol Biomol Spectrosc 189:578–585

    Article  CAS  Google Scholar 

  33. Larkin PJ (2011) Infrared and Raman spectroscopy principles and spectral interpretation. Elsevier

    Google Scholar 

  34. Sundaraganesan N, Anand B, Meganathan C, Joshua BD (2007) FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of 2,3-difluoro pheno. Spectrochim Acta A Mol Biomol Spectrosc 68:561–566

    Article  CAS  Google Scholar 

  35. Bird CW (1968) The carbon-halogen stretching frequencies of some benzyl chlorides and bromides. Spectrochim Acta A Mol Biomol Spectrosc 24:1666–1667

    Article  CAS  Google Scholar 

  36. Thorbjørnsrud J, Ellestad OH, Klaboe P, Torgrimsen T, Christensen DH (1973) Substituted propane VII. The vibrational spectra and conformations of 1,2,3-trichloro-and 1,2,3-tribrormopropane. J Mol Struct 17:5–15

    Article  Google Scholar 

  37. Thorbjornsrud J, Ellestad OH, Klaboe P, Torgrimsen T (1973) Substituted propane V. The vibrational spectra, dipole moments and conformations of 1,2, -dichloro-, 1-chloro-2-bromo- and 1,2-dibrormopropane.”. J Mol Struct 15:45–59

    Article  Google Scholar 

  38. Jensen JO (2004) Vibrational frequencies and structural determination of chloro-methanetricarbonitrile. J Mol Struct THEOCHEM 676:203–207

    Article  CAS  Google Scholar 

  39. Nibbering ET, Dreyer J, Kühn O, Bredenbeck J, Hamm P, Elsaesser T (2007) Vibrational dynamics of hydrogen bonds. In: O. Kühn, L. Wöste (eds) Analysis and control of ultrafast photoinduced reactions. Chem Phys Springer, Berlin, Heidelberg, 87:619–687

  40. Senent ML, Nino A, Munoz-Caro C, Smeyers YG, Domínguez-Gómez R, Orza JM (2002) Theoretical study of the effect of hydrogen-bonding on the stability and vibrational spectrum of isolated 2,2,2-trifluoroethanol and its molecular complexes. J Phys Chem A 106:10673–10680

    Article  CAS  Google Scholar 

  41. Kovacs A, Varga Z (2006) Halogen acceptors in hydrogen bonding. Coord Chem Rev 250:710–727

    Article  CAS  Google Scholar 

  42. Guedes IA, de Magalhães CS, Dardenne LE (2014) Receptor–ligand molecular docking. Biophys Rev 6:75–87

    Article  CAS  Google Scholar 

  43. Lipinski CA (2004) Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  Google Scholar 

  44. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank King Fahd University of Petroleum and Minerals (KFUPM) for its support provided through the internal project no. IN090040.

Author information

Authors and Affiliations

Authors

Contributions

S. A. Popoola: Tables and figures preparation, result discussion, manuscript writing. A. T. Onawole: Literature survey, manuscript writing, docking calculations. N. Ullah: Synthesis. A. A. Al-Saadi: Supervision, calculations, spectroscopic measurements, result discussion, manuscript writing.

Corresponding author

Correspondence to Abdulaziz A. Al-Saadi.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popoola, S.A., Onawole, A.T., Ullah, N. et al. Structural and energetic effect of the intramolecular hydrogen bonding in 4,6-dihaloresorcinols: ab initio calculation, vibrational spectroscopy, and molecular docking studies. Struct Chem 33, 57–69 (2022). https://doi.org/10.1007/s11224-021-01820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01820-z

Keywords

Navigation