Skip to main content
Log in

A theoretical study on gas-phase reaction of methylketene with OH: mechanism, kinetics, and insights

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The oxidation mechanism of CH3CHCO initiated by OH is systematically studied using quantum theoretical methods. According to thermodynamic research, the dominant channel is the addition of CH3CHCO with OH generating C-IM1 (CH3CHOHCO) and C-IM2 (CH3CHCOOH), and then dissociate to the dominant products P1 (CH3CHO + CO) from C-IM1 with the lowest barrier. The rate constants for CH3CHCO + OH → C-IM1 → P1/CH3CHCO + OH → C-IM2 channels are computed through RRKM theory at 200–2000 K. The obtained overall rate constant at 298 K (7.60 × 10−11 cm3 molecule−1 s−1) is well consistent with the reported experimental value. The atmospheric lifetime of CH3CHCO is estimated to be around 1.83 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

Code availability

Gaussian 09 package program.

References

  1. Atkinson R (1986) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem Rev 86:69–201

    Article  CAS  Google Scholar 

  2. Atkinson R, Pitts JN Jr (1975) Rate constants for the reaction of OH radicals with propylene and the butenes over the temperature range 297–425° K. J Chem Phys 63:3591–3595

    Article  CAS  Google Scholar 

  3. Atkinson R, Perry RA, Pitts JN Jr (1977) Absolute rate constants for the reaction of OH radicals with allene, 1,3-butadiene, and 3-methyl-1-butene over the temperature range 299–424 °K. J Chem Phys 67:3170–3174

    Article  CAS  Google Scholar 

  4. Howard CJ (1976) Rate constants for the gas–phase reactions of OH radicals with ethylene and halogenated ethylene compounds. J Chem Phys 65:4771–4777

    Article  CAS  Google Scholar 

  5. Finlayson-Pitts BJ, Pitts JN Jr (1986) Atmospheric chemistry. Wiley, New York

    Google Scholar 

  6. Nicholas J (1976) Chemical kinetics Harper and Row London

  7. Blake GA, Sutton EC, Masson CR, Phelps TG (1987) Molecular abundances in OMC-1-The chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophys J 315:621–645

    Article  CAS  Google Scholar 

  8. Turner BE (1977) Microwave detection of interstellar ketene. Astrophys J 213:L75–L79

    Article  CAS  Google Scholar 

  9. Frank P, Bhaskaran KA, Just Th (1986) High-temperature reactions of triplet methylene and ketene with radicals. J Phys Chem 90:3809–3814

    Article  CAS  Google Scholar 

  10. Sun H, Tang YZ, Wang ZL, Pan XM, Li ZS, Wang RS (2005) DFT study on the mechanisms of the CH2CO + NCX (X = O, S) reactions. J Mol Struct Theochem 757:143–148

    Article  CAS  Google Scholar 

  11. Washida N, Hatakeyama S, Takagi H, Kyogoku T, Sato S (1983) Reaction of ketenes with atomic oxygen. J Chem Phys 78:4533–4540

    Article  CAS  Google Scholar 

  12. Gaffney JS, Atkinson R, Pitts JN Jr (1975) Relative rate constants for the reaction of O(3P) atoms with selected olefins, monoterpenes, and unsaturated aldehydes. J Am Chem Soc 97:6481–6483

    Article  CAS  Google Scholar 

  13. Mack GPR, Thrush BA (1974) Reaction of oxygen atoms with carbonyl compounds Part 3. -Ketene. J Chem Soc Faraday Trans 1 70:1974

  14. Zhou ZY, Fu H, Zhou XM, Cheng XL (2003) Mechanistic investigation on the multi-channel reaction of Cl + CH2CO. J Mol Struct THEOCHEM 620:207–214

    Article  CAS  Google Scholar 

  15. Wallington TJ, Ball JC, Straccia AM, Hurley MD, Kaiser EW, Dill M, Schneider WF (1996) Kinetics and mechanism of the reaction of Cl atoms with CH2CO (ketene). Int J Chem Kinet 28:627–635

    Article  CAS  Google Scholar 

  16. Maricq MM, Ball JC, Straccia AM, Szente JJ (1997) A diode laser study of the Cl + CH3CO reaction. Int J Chem Kinet 29:421–429

    Article  CAS  Google Scholar 

  17. Hou H, Wang BS, Gu Y (2000) Ab initio mechanism and multichannel RRKM-TST rate constant for the reaction of Cl(2P) with CH2CO (ketene). J Phys Chem A 104:320–328

    Article  CAS  Google Scholar 

  18. Grussdorf J, Nolte J, Temps F, Wagner HGg, (1994) Primary products of the elementary reactions of CH2CO with F, Cl, and OH in the gas phase Ber. Bunsenges Phys Chem 98:546–553

    Article  CAS  Google Scholar 

  19. Cheng XL, Zhao YY, Zhou XM, Zhou ZY (2003) Reaction mechanism for the F+CH2CO reaction system based on density functional theory and vibrational mode analysis. J Mol Struct THEOCHEM 638:27–35

    Article  CAS  Google Scholar 

  20. Lee J, Bozzelli JW (2003) Reaction of H plus ketene to formyl methyl and acetyl radicals and reverse dissociations. Int J Chem Kinet 35:20–44

    Article  CAS  Google Scholar 

  21. Michael JV, Nava DF, Payne WA, Stief LJ (1979) Absolute rate constants for the reaction of atomic hydrogen with ketene from 298 to 500 K. J Chem Phys 70:5222–5227

    Article  CAS  Google Scholar 

  22. Slemr F, Warneck P (1975) Reactions of atomic hydrogen with ketene and acetaldehyde. Ber Bunsenges Phys Chem 79:152–156

    Article  CAS  Google Scholar 

  23. Hatakeyama S, Honda S, Akimoto H (1985) Reactions of ketene, methylketene, ethylketene, and dimethylketene with ozone in air. Bull Chem Soc Jpn 58:2411–2412

    Article  CAS  Google Scholar 

  24. Oehlers C, Temps F, Gg WH, Wolf M (1992) Kinetics of the reaction of OH radicals with CH2CO. Ber Bunsenges Phys Chem 96:171–175

    Article  CAS  Google Scholar 

  25. Brown AC, Canosa-Mas CE, Parr AD, Wayne RP (1989) Temperature dependence of the rate of the reaction between the OH radical and ketene. Chem Phys Lett 161:491–496

    Article  CAS  Google Scholar 

  26. Semenikhin AS, Shubina EG, Savchenkova AS, Chechet IV, Matveev SG, Konnov AA, Mebel AM (2018) Mechanism and rate constants of the CH3 + CH2CO reaction: a theoretical study. Int J Chem Kinet 50:273–284

    Article  CAS  Google Scholar 

  27. Sun H, He HQ, Hong B, Chang YF, An Z, Wang RS (2006) Theoretical study of the mechanism of CH2CO + CN reaction. Int J Quant Chem 106:894–905

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc. Wallingford CT

  29. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    Article  CAS  PubMed  Google Scholar 

  31. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  32. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21+G basis set for first-row elements, Li–F. J Comp Chem 14:294–301

    Article  Google Scholar 

  33. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  34. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  35. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  36. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  37. Peiró-García J, Nebot-Gil I (2003) Ab initio study on the mechanism of the atmospheric reaction OH + O3 → HO2 + O2. Chem Phys Chem 4:843–847

    Article  PubMed  Google Scholar 

  38. Peiró-García J, Nebot-Gil I (2003) Ab initio study of the mechanism of the atmospheric reaction: NO2 + O3 → NO3 + O2. J Comput Chem 24:1657–1663

    Article  PubMed  Google Scholar 

  39. Rienstra-Kiracofe JC, Allen WD, Schaefer HF (2000) The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J Phys Chem A 104:9823–9840

    Article  CAS  Google Scholar 

  40. Holbrook KA, Pilling MJ, Robertson SH (1996) Unimolecular reactions; J. Wiley, Chichester, UK

    Google Scholar 

  41. Smith IWM (1980) Kinetics and dynamics of elementary gas reactions. Butterworth, London, p 118

    Google Scholar 

  42. Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical Eckart potential energy barriers. J Phys Chem 66:532–533

    Article  Google Scholar 

  43. Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  44. Bai FY, Tang NS, YZ, Pan XM, Zhao Z (2019) New insights into 3M3M1B: roles of water on the •OH-initiated degradation and aerosol formation in the presence of NOX (X=1, 2) and alkali. Phys Chem Chem Phys 21:17378–17392

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundations of China (No. 21707062), Scientific Research Starting Foundation of Mianyang Normal University (No. QD2016A007) and by the Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.

Author information

Authors and Affiliations

Authors

Contributions

Yongguo Liu, Huaming Du, Meilian Zhao, Yuxi Sun, Huirong Li Zhiguo Wang: calculation, data curation, formal analysis, investigation. Yunju Zhang: calculation, writing-review and editing.

Corresponding author

Correspondence to Yunju Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 346 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Y., Du, H. et al. A theoretical study on gas-phase reaction of methylketene with OH: mechanism, kinetics, and insights. Struct Chem 33, 49–56 (2022). https://doi.org/10.1007/s11224-021-01811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01811-0

Keywords

Navigation