Skip to main content
Log in

Critical fluid density obtained from the theory of generalized charges in accordance with the hypothesis on the first coordination number

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this article, a model of hard spheres for critical fluid, based on the hypothesis on the coordination number of molecules in minimally bound infinite clusters, is considered. Variants of homogeneous (quasi-crystalline lattice) and heterogeneous (“Cayley tree forest”) molecular packings at the vertices of a uniform graph of order 3 are described. Using the theory of generalized charges and taking into account the found structures, the dependences of the critical molar volume on electronic structure parameters, which have the character of non-empirical laws, are derived. A priori calculations of molar volumes by the critical state model are in good agreement with the reference data for simple gases and linear hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balescu R (1975) Equilibrium and nonequilibrium statistical mechanics, vol 398. John Wiley & Sons, Chichester, New York, p Ch.10

    Google Scholar 

  2. Landau LD, Lifshits EM (2013) Course of theoretical physics, Vol.5, Statistical physics, Part 1. Butterworth-Heinemann, §84

  3. Guggenheim EA (1945) The principle of corresponding states. J Chem Phys 13:253–261

    Article  CAS  Google Scholar 

  4. Van Hook WA, Rebelo LPN, Wolfsberg M (2007) Isotope effects on VLE properties of fluids and corresponding states: critical point shifts on isotopic substitution. Fluid Phase Equilib 257:35

    Article  Google Scholar 

  5. Tomaschitz R (2019) Effective Hamiltonians and empirical fluid equations of state. Fluid Phase Equilib 496:80

    Article  CAS  Google Scholar 

  6. Amani MJ, Dehdari L, Ghamartale A (2019) Modelling density and excess volume of hydrocarbon + water mixtures near the critical region. Fluid Phase Equilib 492:55

    Article  CAS  Google Scholar 

  7. Haghighi B, Papari MM, Niafari M, Ghasemi H (2006) Molar volume for mixtures of methane with krypton, argon, ethane and carbon monoxide using the ISM equation of state. J Mol Liq 123(2–3):134

    Article  CAS  Google Scholar 

  8. Venkatraj M, Bratschi C, Huber H, Gdanitz RJ (2004) Monte Carlo simulations of vapor–liquid equilibria of neon using an accurate ab initio pair potential. Fluid Phase Equilib 218:285

    Article  CAS  Google Scholar 

  9. Heyes DM (2015) The Lennard-Jones fluid in the liquid-vapour critical region. Comput Methods Sci Technol 21(4):169

    Article  Google Scholar 

  10. Poling BE, Prausnitz JM, O’Connell JP (2004) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  11. Ono S, Kondo S (1960) Molecular theory of surface tension in liquids. Structure of liquids/Struktur der Flüssigkeiten. Encyclopedia of physics/Handbuch der Physik, vol 3/10. Springer, Berlin. https://doi.org/10.1007/978-3-642-45947-4_2

    Chapter  Google Scholar 

  12. Dolgonosov AM (1998) Calculation of adsorption energy and Henry law constant for nonpolar molecules on a nonpolar uniform adsorbent. J Phys Chem B 102:4715 The first article, where the generalised charges are introduced

    Article  CAS  Google Scholar 

  13. Dolgonosov AM (2009) The electron gas model and the theory of generalized charges for the description of interatomic interactions and adsorption. URSS (LIBROKOM), Moscow (Rus.)

    Google Scholar 

  14. Dolgonosov AM (2001) A theory of generalized charges for describing interatomic interactions. Russ J Phys Chem (Engl Transl) 75:1659

    Google Scholar 

  15. Dolgonosov AM (2002) The screening effect in interatomic interactions. Russ J Phys Chem (Engl Transl) 76:2015

    Google Scholar 

  16. Dolgonosov AM (2016) The surface tension coefficients and critical temperatures of uniform nonpolar liquids from a priori calculations within the framework of the theory of generalized charges. Rus Chem Bul (Engl Transl) 65:952

    Article  CAS  Google Scholar 

  17. Dolgonosov AM (2020) Hypothesis for coordination number of critical fluid molecules expressed in model potential and critical temperature for simple substances. Theor Chem Accounts 139:90. https://doi.org/10.1007/s00214-020-02590-3

    Article  CAS  Google Scholar 

  18. Stephan S, Thol M, Vrabec J, Hasse H (2019) Thermophysical properties of the Lennard-Jones fluid: database and data assessment. J Chem Inf Model 59(10):4248–4265. https://doi.org/10.1021/acs.jcim.9b00620

    Article  CAS  PubMed  Google Scholar 

  19. Batsanov SS (1998) Some characteristics of van der Waals interaction of atoms. Russ J Phys Chem (Engl Transl) 72:894–897

    Google Scholar 

  20. Lide DR (ed) (2005) CRC handbook of chemistry and physics. CRC Press, Boca Raton

  21. Dean JA (1999) Lange’s handbook of chemistry15th edn. McGraw-Hill Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly M. Dolgonosov.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgonosov, A.M. Critical fluid density obtained from the theory of generalized charges in accordance with the hypothesis on the first coordination number. Struct Chem 32, 329–336 (2021). https://doi.org/10.1007/s11224-020-01675-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01675-w

Keywords

Navigation