Skip to main content

Advertisement

Log in

Homology modelling and virtual screening to explore potent inhibitors for MAP2K3 protein

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

MAP2K3 protein is mitogen-activated protein kinase belonging to the family of kinases involved in intracellular cell proliferation. The mammalian MAPK family that consists of ERK, p38 and JNK signalling pathway is showing a critical role in the regulation of cell proliferation. MAP2K3 and MAP2K6 are highly selective for p38 MAPKs which actively participate at check point controls and various stages of cell cycle at G0, G1/S and G2/M transitions by differential regulation of specific cyclin A or D1. In the present work, the 3D model of MAP2K3 protein is generated using comparative homology modelling techniques, minimized and validated. Active site of the protein is determined using various server tools and literature studies, for the prediction of important binding pockets to identify the putative active site. Virtual screening was carried out using chalcone library in Schrodinger suite to identify new lead molecules to knock down MAP2K3 target protein and inhibit cell proliferation. An Atomistic MD simulation of screened compound with MAP2K3 not only strengthens our findings but also identified the key interactions involved in protein-ligand complex in the dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

NAMD:

Nanoscale molecular dynamics

PDB:

Protein Data Bank

CASTp:

Computed Atlas of surface topography of proteins

ProSA:

Protein structure analysis

OPLS:

Optimized potentials for liquid simulations

MMGBSA:

Molecular mechanics generalized born surface area

RMSD:

Root mean square deviation

SAVES:

Structural analysis and verification server

ADME:

Absorption distribution metabolism and excretion

MD:

Molecular dynamics

References

  1. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  2. Aymone G, Giuseppe S, Giuseppe N et al (2010) Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. J Biol Chem 19:14160–14169

    Google Scholar 

  3. Cuevas BD, Abell AN, Johnson GL (2009) Role of mitogen -activated protein kinase kinase kinases in signal integration. Oncogene 26:3159–3171

    Article  CAS  Google Scholar 

  4. Eun KK, Choi EJ (2010) Pathological roles of MAPK signalling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  CAS  Google Scholar 

  5. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  CAS  PubMed  Google Scholar 

  6. Hari K, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes cancer 4:342–359

    Article  CAS  Google Scholar 

  7. Chen L, Mayer JA, Krisko TI et al (2009) Inhibition of the p38 kinase suppresses the proliferation human ER-negative breast cancer cells. Cancer Res 69:8853–8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dhillon AS, Hagan S, Rath O et al (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    Article  CAS  PubMed  Google Scholar 

  9. Cuenda A, Rousseau S (2007) p38 MAP-Kinases pathway regulation, function and role. Biochim Biophys Acta 1773:1358–1375

    Article  CAS  PubMed  Google Scholar 

  10. Bradham C, McClay D (2006) p38 MAPK in development and cancer. Cell Cycle 5:824–828

    Article  CAS  PubMed  Google Scholar 

  11. Chen L, Mayer JA, Krisko TI et al (2009) Inhibition of the p38 Kinase suppresses the proliferation of human ER –negative breast cancer cells. Cancer Research Res 69:8853–8861

    Article  CAS  Google Scholar 

  12. Grivennikov SI, Greten FR et al (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. James A, McCubrey LS, Steelman A et al (2007) Role of the Raf/ MEK/ ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284

    Article  CAS  Google Scholar 

  14. Regad T (2015) Targeting RTK signaling pathways in cancer. Cancers (Basel) 7:1758–1784

    Article  CAS  PubMed Central  Google Scholar 

  15. Chang –Liang Xu, Shuang –Shuang Zhao, Hong –Wei He et al (2014) synthesis and cytotoxic evaluation of alkoxylated chalcones. Molecules 19:17256-17278

  16. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  CAS  PubMed  Google Scholar 

  17. Bhargavi M, Sivan SK, Potlapally SR (2017) Identification of novel anti-cancer agents by applying insilico methods for inhibition of TSPO protein. Comput Biol Chem 68:43–55

    Article  CAS  PubMed  Google Scholar 

  18. Malkhed V, Mustyala KK, Potlapally SR et al (2012) Modelling of alternate RNA polymerase sigma D factor and identification of novel inhibitors by virtual screening. Cell Mol Bioeng 5:363–374

    Article  CAS  Google Scholar 

  19. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malkhed V, Gudlur B, Kondagari B et al (2011) Study of interactions between mycobacterium tuberculosis proteins: SigK and anti-SigK. J Mol Model 17:1109–1119

    Article  CAS  PubMed  Google Scholar 

  21. Sali A, Potterton L, Yuan F et al (1995) Evaluation of comparative protein modelling by MODELLER. Proteins 23:318–326

    Article  CAS  PubMed  Google Scholar 

  22. Alice QZ, Corey SO, Lynne R (2011) Revisiting the Ramachandran plot from a new angle. Protein Sci 20:1166–1171

    Article  CAS  Google Scholar 

  23. Wiederstein M, Sippl MJ (2007) Prosa-web: interactive web service for recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410

    Article  Google Scholar 

  24. Dundas J, Ouyang Z, Tseng J et al (2006) Castp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:116–118

    Article  CAS  Google Scholar 

  25. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    Article  CAS  PubMed  Google Scholar 

  26. Sarita Rajender P, Kiran Kumar M, Vasavi M et al (2012) Novel inhibitors targeting cell signalling receptor-cyclin D2 by virtual screening. J Pharm Res 5:572–579

    Google Scholar 

  27. Roman AL (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29:221–222

    Article  Google Scholar 

  28. Weizhong L, Andrew C, Mahmut U et al (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43:580–584

    Article  CAS  Google Scholar 

  29. Natesh S, Ludovic C, Bruno OV (2020) Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief Bioinform:1–29

  30. Chen IJ, Foloppe N (2010) Drug-like bioactive structures and conformational coverage dwith the Ligprep/confgen suite: Comparison to programs MOE and catalyst. J Chem Inf Model 50:822–839

    Article  CAS  PubMed  Google Scholar 

  31. Ghosh S, Nice A, An J et al (2006) Structure based virtual screening of chemical libraries fordrug discovery. Curr Opin Chem Biol 10:194–202

    Article  CAS  PubMed  Google Scholar 

  32. Tian-Yang S, Qi W, Jin Z et al (2013) Trastuzumab-peptide interactions: mechanism and application in structure-based ligand design. Int J Mol Sci 14:16836–16850

    Article  CAS  Google Scholar 

  33. Chandra N, Kumari MK, Sharma C, Vijjulatha M et al (2015) QM/MM docking strategy and prime/MM-GBSA calculation of celecoxib analogues as N-myristoyltransferase inhibitors. Virol-mycol 4:141–148

    Google Scholar 

  34. Qikprop version 2.3, Schrodinger, LLC, New York, NY, 2005

  35. Mark James A, Teemu M, Roland S et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX:19–25

  36. Martin S, Bertrand C, Koen M et al (2018) Automated topology builder version 3.0: prediction of salvation free enthalpies in water and hexane. J Chem Theory Comput 14:5834–5845

    Article  CAS  Google Scholar 

  37. Nathan S, Andreas P. Alexandra C et al (2011) Definition and testing of the GROMOS force –field versions 54A7 and 54B7n. Eur Biophys J 40:843-856

  38. Katarzyna B, Martin S, Alpeshkumar K, Alan E (2014) Testing and validation of the automated topology builder (ATB) version 2.0: prediction of hydration free enthalpies. J Comput Aided Mol Des 28:221–233

    Article  CAS  Google Scholar 

  39. Dymnikov AD, Limar VV, Sidorov VP (1992) Mathematical simulation of precision scanning by a H- beam. AIP conference proceedings 287:658–671

    Article  Google Scholar 

  40. Giovanni B, Davide D, Michele P (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101–014107

    Article  CAS  Google Scholar 

  41. Ulrich E, Lalith P, Max LB et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  Google Scholar 

  42. Berk H, Henk B, Herman JC et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1–14

    Article  Google Scholar 

  43. Shuichi M, Peter AK (1992) Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  Google Scholar 

  44. Wenjie D, David CN, Gerald H et al (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336

    Article  CAS  Google Scholar 

  45. Christian C, Jonathan DB, Geoffrey JB (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Reas 36:197–201

    Article  CAS  Google Scholar 

  46. Lawrence AK, Stefans M, Christipher M et al (2015) The Phyre2 web portal for protein modelling. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  47. Goverdhan M, Park JH, Praburaman et al (2015) Relative expression of low molecular weight, tyrosine phosphatase (Wzb Gene) of Herbaspirilliumsp GW 103 toward Arsenic stress and molecular modeling. Curr Microbiol l71:311–316

    Google Scholar 

  48. Elham OM, Ahmad B (2013) Correctness and accuracy of template-based modelled single chain fragment variable (scFv) protein anti-breast cancer cell line (MCF-7). O J Gen 3:183–194

    Google Scholar 

  49. Weiqing R, Xiao-Ping W (2000) An iterative grid redistribution method for singular problems in multiple dimensions. J Comput Phys 159:246–273

    Article  Google Scholar 

  50. Sunghwan K, Paul AT, Tiejun C et al (2016) Literature information in PubChem: associations between PubChem records and scientific articles. J Chem Inform 8:32–47

    Google Scholar 

  51. Devjani IB, Tejas PG (2016) Interaction of antimicrobial peptide with mycolyl transferase in Mycobacterium tuberculosis. Int J Mycobactereriol 5:83–88

    Article  Google Scholar 

  52. Ramakrishna D, Ramasree D, Bhargavi K et al (2016) Suppressor of cytokine signalling-3 as a drug target for type 2 diabetes mellitus: a structure-guided approach. J Med Chem Drug Discov 1:2502–2514

    Google Scholar 

Download references

Acknowledgement

The author Manan Bhargavi is thankful to the Principal and Head, Department of Chemistry, University College of Science and Nizam College, Osmania University, for providing the facilities to carry out the research work. AJ acknowledges the Department of Biotechnology, Govt of India, for the Ramalingamswami Re-entry Fellowship-2019 and the Birla Institute of Technology Mesra, Ranchi, India, for providing the facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Rajender Potlapally.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargavi, M., Vhora, N., Lanka, G. et al. Homology modelling and virtual screening to explore potent inhibitors for MAP2K3 protein. Struct Chem 32, 1039–1051 (2021). https://doi.org/10.1007/s11224-020-01667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01667-w

Keywords

Navigation