Skip to main content
Log in

DFT calculations and in situ DRIFTS study of CO oxidation on CeO2/Co3O4 catalyst

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The surface structures, CO adsorption, and oxidation-reaction properties of CeO2/Co3O4(110) have been investigated by using density functional theory including on-site Coulomb corrections (DFT+U) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). Results indicate that CO can be chemisorbed on the Co sites of the terrace and interface of CeO2/Co3O4(110). At the interface, adsorbed and gas-phase CO reacting with lattice oxygen are investigated, respectively. It has been found that the lattice oxygen at the interface is more likely to be attacked by gas-phase CO directly to form adsorbed CO2. For desorption of the CO2, very high energy barriers are required. Furthermore, the infrared spectra reveal that the intermediate species at interface still exist even at 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ye LP, Li S, Luo Y (2013) Fine chemicals 30:1379-1383+1393

  2. Choi SD, Min BK (2001). Sens Actuator B 77:330

    Article  CAS  Google Scholar 

  3. Hornés A, Hungría AB, Bera P, López Cámara A, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca JJ, Hanson JC, Rodriguez JA (2010). J Am Chem Soc 132:34–35

    Article  Google Scholar 

  4. Lou Y, Wang L, Zhao ZY, Zhang YH, Zhang ZG, Lu GZ, Guo Y, Guo YL (2014). Appl Catal B-Environ 146:43–49

    Article  CAS  Google Scholar 

  5. Grillo F, Natile MM, Glisenti A (2004). Appl Catal B-Environ 48:267–274

    Article  CAS  Google Scholar 

  6. Liotta LF, Wu HJ, Pantaleo G, Venezia AM (2013). Catal Sci Technol 3:3085–3102

    Article  CAS  Google Scholar 

  7. Haneda M, Kintaichi Y, Bionl N, Hamada H (2003). Appl Catal B-Environ 46:473–482

    Article  CAS  Google Scholar 

  8. Wang HF, Kavanagh R, Guo YL, Guo Y, Lu GZ, Hu P (2012). J Catal 296:110–119

    Article  CAS  Google Scholar 

  9. Huan WW, Li J, Ji JH, Xing MY (2019). Chin J Catal 40:656–663

    Article  CAS  Google Scholar 

  10. Zeng SH, Wang Q, Wang Y, Fei Y, Liu N, Ding SP, Su HQ (2016). J Nanosci Nanotechno 16:962–966

    Article  CAS  Google Scholar 

  11. Lukashuk L, Föttinger K, Kolar E, Rameshan C, Teschner D, Hävecker M, Gericke AK, Yigit N, Li H, McDermott E, Stöger-Pollach M, Rupprechter G (2016). J Catal 344:1–15

    Article  CAS  Google Scholar 

  12. Tang CW, Kuo CC, Kuo MC, Wang CB, Chien SH (2006). Appl Catal A-Gen 309:37–43

    Article  CAS  Google Scholar 

  13. Tang CW, Kuo MC, Lin CJ, Wang CB, Chien SH (2008). Catal Today 131:520–525

    Article  CAS  Google Scholar 

  14. Feng XL, Liu DP, Li W, Jin X, Zhang Z, Zhang Y (2019). Inorg Chem Front 7:421–426

    Article  Google Scholar 

  15. Wang C, Wang D, Yang Y, Li R, Chen C, Chen Q (2016). Nanoscale 3:445–456

    Google Scholar 

  16. Kresse G, Furthmüller J (1996). Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  17. Kresse G, Furthmüller J (1996). Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  18. MedeA® is a registered trademark of Materials Design, Inc., Santa Fe, New Mexico, USA, 2013

  19. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  20. Kresse G, Joubert D (1999). Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  21. Blöchl PE (1994). Phys Rev B 50:17953–17979

    Article  Google Scholar 

  22. Anisimov VI, Aryasetiawan F, Lichtenstein VI (1997). J Phys Condens Matter 9:767–808

    Article  CAS  Google Scholar 

  23. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998). Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  24. Sencer S, Annabella S (2015). J Phys Chem C 119:9973–9979

    Article  Google Scholar 

  25. Dutta P, Seehra MS, Thota S, Kumar J (2008). J Phys Condens Matter 20:015218

    Article  Google Scholar 

  26. Fabris S, Gironcoli DS, Baroni S, Vicario G, Balducci G (2005). Phys Rev B 72:237102

    Article  Google Scholar 

  27. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5188

    Article  Google Scholar 

  28. Jonsson H, Mills G, Jacobsen KW (1998) World scientific Singapore

  29. Henkelman G, Jónsson H (2000). J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  30. Henkelman G, Uberuaga BP, Jónsson H (2000). J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  31. Sheppard D, Terrell R, Henkelman G (2008). J Chem Phys 128:134106

    Article  Google Scholar 

  32. Sheppard D, Henkelman G (2011). J Comput Chem 32:1769–1771

    Article  CAS  Google Scholar 

  33. Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012). J Chem Phys 136:074103

    Article  Google Scholar 

  34. Graciani J, Vidal AB, Rodriguez JA, Sanz JF (2014). J Phys Chem C 118:26931–26938

    Article  CAS  Google Scholar 

  35. Rodriguez JA, Graciani J, Evans J, Park JB, Yang F, Stacchiola DJ, Senanayake SD, Ma S, Pérez M, Liu P (2009). Angew Chemie Int Ed 48:8047–8050

    Article  CAS  Google Scholar 

  36. Sabatier P (1911) Berichte der deutschen chemischen Gesellschaft 44:1984-2001

  37. Pang XY, Liu C, Li DC, Lv CQ, Wang GC (2013). ChemPhysChem 14:204–212

    Article  CAS  Google Scholar 

  38. Jiang SP, Lu Y, Wang SP, Zhao YJ, Ma XB (2017). Appl Surf Sci 416:59–68

    CAS  Google Scholar 

Download references

Funding

This work was supported by Shanghai Talent Development Funding Scheme (2018019), Program of Shanghai Academic/Technology Research Leader (20XD1431700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingxing Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Yang, B. & Luo, Y. DFT calculations and in situ DRIFTS study of CO oxidation on CeO2/Co3O4 catalyst. Struct Chem 32, 799–804 (2021). https://doi.org/10.1007/s11224-020-01660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01660-3

Keywords

Navigation