Skip to main content
Log in

Sensing behavior of pristine and doped C70 fullerenes to mercaptopurine drug: a DFT/TDDFT investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic sensitivity and reactivity of a pristine, Al, and Si-doped C70 fullerene with MP drug were investigated using density functional theory. With adsorption energy of approximately − 6.06 kcal/mol, MP drug was found to be adsorbed physically on pristine C70 through its N-head and to exert no effects on the electrical conductivity of this fullerene. Substituting Al and Si atoms for C atoms in C70 significantly elevates the reactivity of C70 fullerene, respectively at predicted adsorption energies of approximately − 43.06 and − 35.01 kcal/mol. MP drug does significantly affect the energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), i.e., Eg, and work function of Si and Al-doped C70 fullerene. Significant HOMO destabilization in Si–C70 through MP drug adsorption increases the electrical conductivity of Si–C70 while generating electrical signals and reduces its Eg from 2.13 to 0.79 eV. These signals are associated with the presence of MP drug in the environment. Therefore, Si-doped C70 is found to constitute a promising electronic MP drug sensor. MP drug adsorption increases electron emission from the surface of this sensor and significantly reduces its work function. In contrast to the cases of pristine fullerene, Al, and Si–C70 fullerene doped forms, significant effects of MP drug adsorption on the Fermi levels and work function of Si–C70 make it an Φ-type candidate for MP drug sensors. According to the time-dependent density functional theory, there is a large peak at 1029.65 nm in the steadiest MP/Si–C70 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chegel R, Behzad S (2019). Tight binding theory of thermal conductivity of doped carbon nanotube. Physica E Low Dimens Syst Nanostruct 114:113586

    CAS  Google Scholar 

  2. Parandin F, Jalilian J (2019). Chem Rev Lett 2(2):76

    Google Scholar 

  3. Yoon J, Ru CQ (2019). Metamaterial-like vibration of doublewalled carbon nanotubes. Physica E Low Dimens Syst Nanostruct 107:196–202

    CAS  Google Scholar 

  4. Mohammadi S, Musavi M, Abdollahzadeh F, Babadoust S, Hosseinian A (2018). Chem Rev Lett 1(2):49

    Google Scholar 

  5. Siadati SA, Rezazadeh S (2018). Chem Rev Lett 1(2):77

    Google Scholar 

  6. Babanezhad E, Beheshti A (2018). Chem Rev Lett 1(2):82

    Google Scholar 

  7. Behmagham F, Asadi Z, Jamal Sadeghi Y (2018). Chem Rev Lett 1(2):68

    Google Scholar 

  8. Conti M, Tazzari V, Baccini C, Pertici G, Serino LP, De Giorgi U (2006). In Vivo 20(6A):697

    CAS  PubMed  Google Scholar 

  9. Singh R, Lillard Jr JW (2009). Exp Mol Pathol 86(3):215

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007). Int J Nanomed 2(4):639

    CAS  Google Scholar 

  11. Lin HB, Shih JS (2003). Sensors Actuators B Chem 92(3):243

    CAS  Google Scholar 

  12. Hazrati MK, Hadipour NL (2016). Phys Lett A 380(7-8):937

    CAS  Google Scholar 

  13. Beheshtian J, Peyghan AA, Bagheri Z, Kamfiroozi M (2012). Struct Chem 23(5):1567

    CAS  Google Scholar 

  14. Yeh YC, Lai HC, Ting CT, Lee WL, Wang LC, Wang KY, Liu TJ (2007). Biochem Pharmacol 74(7):969

    CAS  PubMed  Google Scholar 

  15. Prylutskyy YI, Evstigneev MP, Cherepanov VV, Kyzyma OA, Bulavin LA, Davidenko NA, Scharff P (2015). J Nanopart Res 17(1):45

    Google Scholar 

  16. Prylutska SV, Burlaka AP, Klymenko PP, Grynyuk II, Prylutskyy YI, Schuetze C, Ritter U (2011). Cancer Nanotechnol 2(1-6):105

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Moussa F (2005). Nano Lett. 12:2578

    Google Scholar 

  18. Prylutska SV, Grynyuk II, Matyshevska OP, Prylutskyy YI, Ritter U, Scharff P (2008). Anti‐oxidant properties of C60 fullerenes in vitro. Fuller Nanotub Carbon Nanostructures 16(5-6):698−705

  19. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006). Environ Sci Technol 40:4336

    CAS  PubMed  Google Scholar 

  20. Lyon DY, Adams LK, Falkner JC, Alvarez PJ (2006). Environ Sci Technol 40(14):4360

    CAS  PubMed  Google Scholar 

  21. Hetzer M, Bayerl S, Camps X, Vostrowsky O, Hirsch A, Bayerl TM (1997). Adv Mater 9(11):913

    CAS  Google Scholar 

  22. Prylutska S, Panchuk R, Gołuński G, Skivka L, Prylutskyy Y, Hurmach V, Kyzyma O (2017). Nano Res 10(2):652

    CAS  Google Scholar 

  23. Prylutskyy YI, Cherepanov VV, Evstigneev MP, Kyzyma OA, Petrenko VI, Styopkin VI, Piosik J (2015). Phys Chem Chem Phys 17(39):26084

    CAS  PubMed  Google Scholar 

  24. Anafcheh M, Naderi F (2018). Int J Hydrog Energy 43(27):12271

    CAS  Google Scholar 

  25. Arshadi S, Anisheh F (2017). Theoretical study of Cr and Co-porphyrin-induced C70 fullerene: a request for a novel sensor of sulfur and nitrogen dioxide. J Sulfur Chem 38(4):357−371

    CAS  Google Scholar 

  26. Echt O, Kaiser A, Zöttl S, Mauracher A, Denifl S, Scheier P (2013). ChemPlusChem. 78(9):910

    CAS  PubMed  Google Scholar 

  27. Korona T, Dodziuk H (2011). J Chem Theory Comput 7(5):1476

    CAS  PubMed  Google Scholar 

  28. Wang L, Zhang Z (2008). Talanta. 76(4):768

    CAS  PubMed  Google Scholar 

  29. Keyvanfard M, Khosravi V, Karimi-Maleh H, Alizad K, Rezaei B (2013). J Mol Liq 177:182

    CAS  Google Scholar 

  30. Besada A, Tadros NB, Gawargious YA (1989). Microchim Acta 99(1-2):143

    Google Scholar 

  31. Lavi LE, Holcenberg JS (1985). Anal Biochem 144(2):514

    CAS  PubMed  Google Scholar 

  32. Boulieu R, Dervieux T (1999). J Chromatogr B Biomed Sci Appl 2(730):273

    Google Scholar 

  33. Ng M, Blaschke TF, Arias AA, Zare RN (1992). Anal Chem 64(15):1682

    CAS  PubMed  Google Scholar 

  34. Ensafi AA, Karimi-Maleh H (2012). Drug Test Anal 4(12):970

    CAS  PubMed  Google Scholar 

  35. Zhu JJ, Gu K, Xu JZ, Chen HY (2001). Anal Lett 34(3):329

    CAS  Google Scholar 

  36. Vahabi V, Soleymanabadi H (2016). J Mex Chem Soc 60(1):34

    CAS  Google Scholar 

  37. Li M, Wei Y, Zhang G, Wang F, Li M, Soleymanabadi H (2020). A DFT study on the detection of isoniazid drug by pristine, Si and Al doped C70 fullerenes. Physica E Low Dimens Syst Nanostruct 118:113878

    CAS  Google Scholar 

  38. Rastegar SF, Hadipour NL, Soleymanabadi H (2014). J Mol Model 20(9):2439

    PubMed  Google Scholar 

  39. Ahmadi Peyghan A, Soleymanabadi H, Bagheri Z (2015). First principles study of H2O and NH3 adsorption on the pristine and B-doped Al12N12 nanocluster. Iran J Sci Technol (Sciences) 39(4):485−489

  40. Omidi MH, Soleymanabadi H, Bagheri Z (2015). Struct Chem 26(2):485

    CAS  Google Scholar 

  41. Peyghan AA, Soleymanabadi H (2014). Mol Phys 112(20):2737

    CAS  Google Scholar 

  42. Escobedo-Morales A, Tepech-Carrillo L, Bautista-Hernández A, Camacho-García JH, Cortes-Arriagada D, Chigo-Anota E (2019) Effect of chemical order in the structural stability and physicochemical properties of B 12 N 12 fullerenes. Sci Rep 9(1):1–11

    CAS  Google Scholar 

  43. Anota EC, Villanueva MS, Hernández AB, Hernández WI, Castro M (2018) Retention of carbon monoxide onto magnetic [BN fullerene: B 6]−and [BN fullerene: C 6]−nanocomposites. Appl Phys A 124(9):590

  44. Ordaz JC, Anota EC, Villanueva MS, Castro M (2017) Possibility of a magnetic [BN fullerene: B 6 cluster]−nanocomposite as a vehicle for the delivery of dapsone. New J Chem 41(16):8045–8052

    Google Scholar 

  45. González VR, Escobedo-Morales A, Cortés-Arriagada D, Peralta MDLR, Anota EC (2019) Enhancement of caffeine adsorption on boron nitride fullerene by silicon doping. Appl Nanosci 9(3):317–326

    Google Scholar 

  46. Rastegar SF, Peyghan AA, Hadipour NL (2013). Appl Surf Sci 265:412

    CAS  Google Scholar 

  47. Rastegar SF, Hadipour NL, Tabar MB, Soleymanabadi H (2013). J Mol Model 19(9):3733

    CAS  PubMed  Google Scholar 

  48. Saedi L, Soleymanabadi H, Panahyab A (2018). A computational study on the electronic and field emission properties of Mg and Si doped AlN nanocones. Physica E Low Dimens Syst Nanostruct 99:106−111

  49. Peyghan AA, Soleymanabadi H, Bagheri Z (2015). J Iran Chem Soc 12(6):1071

    CAS  Google Scholar 

  50. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    CAS  Google Scholar 

  51. Lee C, Yang W, Parr RG (1988). Phys Rev B 37(2):785

    CAS  Google Scholar 

  52. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993). J Comput Chem 14(11):1347

    CAS  Google Scholar 

  53. Beheshtian J, Baei MT, Peyghan AA (2012). Surf Sci 606(11-12):981

    CAS  Google Scholar 

  54. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010). J Chem Theory Comput 6(4):1351

    CAS  Google Scholar 

  55. Beheshtian J, Soleymanabadi H, Peyghan AA, Bagheri Z (2013). Appl Surf Sci 268:436

    CAS  Google Scholar 

  56. Soleymanabadi H, Kakemam J (2013). Physica E: Low-dimensional Systems and Nanostructures 54:115

    CAS  Google Scholar 

  57. Peyghan AA, Soleymanabadi H (2015). Curr Sci 1910

  58. Rastegar SF, Peyghan AA, Soleymanabadi H (2015). Ab initio studies of the interaction of formaldehyde with beryllium oxide nanotube. Physica E Low Dimens Syst Nanostruct 68:22−27

  59. Nayebzadeh M, Peyghan AA, Soleymanabadi H (2014). Density functional study on the adsorption and dissociation of nitroamine over the nanosized tube of MgO. Physica E Low Dimens Syst Nanostruct 62:48−57

  60. Ahmadi Peyghan A, Hadipour NL, Bagheri Z (2013). J Phys Chem C 117(5):2427

    CAS  Google Scholar 

  61. Eslami M, Vahabi V, Peyghan AA (2016). Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: a computational study. Physica E Low Dimens Syst Nanostruct 76:6−11

  62. Samadizadeh M, Peyghan AA, Rastegar SF (2015). Chin Chem Lett 26(8):1042

    CAS  Google Scholar 

  63. Baikie ID, Mackenzie S, Estrup PJZ, Meyer JA (1991). Rev Sci Instrum 62(5):1326

    CAS  Google Scholar 

  64. Korotcenkov G (2013) Handbook of Gas Sensor Materials. Springer, New York, pp 377–388

    Google Scholar 

  65. Richardson OW (1924). Phys Rev 23(2):153

    CAS  Google Scholar 

  66. Dushman S (1930). Rev Mod Phys 2(4):381

    CAS  Google Scholar 

  67. Moosavi-zare AR, Abdolmaleki M, Goudarziafshar H, Soleymanabadi H (2018). Inorg Chem Commun 91:95

    CAS  Google Scholar 

  68. Kim C, Kim B, Lee SM, Jo C, Lee YH (2002). Phys Rev B 65(16):165418

    Google Scholar 

  69. Shakerzadeh E, Biglari Z, Tahmasebi E (2016). Chem Phys Lett 654:76

    CAS  Google Scholar 

  70. Bader RF (1985). Acc Chem Res 18(1):9

    CAS  Google Scholar 

  71. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105(8):2999

    CAS  PubMed  Google Scholar 

  72. Abdolahi N, Aghaei M, Soltani A, Azmoodeh Z, Balakheyli H, Heidari F (2018). Spectrochim Acta A Mol Biomol Spectrosc 204:348–353

    CAS  PubMed  Google Scholar 

  73. Szeghalmi AV, Leopold L, Pinzaru S, Chis V, Silaghi-Dumitrescu I, Schmitt M, Popp J, Kiefer W (2005). J Mol Struct 735:103–113

    Google Scholar 

Download references

Funding

This work was supported by the rapid detection of two tumor markers of small cell lung cancer protein nano immune sensing research at the same time (202102310298).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuping Yang or Wei Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Sun, A. & Gu, W. Sensing behavior of pristine and doped C70 fullerenes to mercaptopurine drug: a DFT/TDDFT investigation. Struct Chem 32, 457–468 (2021). https://doi.org/10.1007/s11224-020-01651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01651-4

Keywords

Navigation