Skip to main content
Log in

Stability of spherical molecular complexes: a theoretical study of self-assembled M12L24 nanoballs

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Supramolecular coordination complexes have become of great interest due to their broad spectrum of applicability, mainly in the area of biomedicine. Understanding the role played by the metal center and the weak interactions in the formation and stabilization of these compounds allow us to have a better design of these molecules and therefore a better guide for the examination of novel applications. In this work, we investigate the effect of noncovalent interactions and the presence of metal centers in the stabilization of Tominaga’s M12L24 nanoballs. We considered bis(4-pyridyl)-substituted bent frameworks involving two acetylenes spacers as the ligand (L), using –H, –CH3, and a cyanophenyl group as substituents, and two different metal cations: Pd2+ and Ni2+. We found that the bond distance between the metal and the ligand was smaller for the nickel complexes than for the palladium compounds. This is related to the dissociation energies (Ni2+ systems are more stable than Pd2+ compounds). Furthermore, nanoballs with the largest ligand’s substituent are significantly more stable than those with the smallest ligand’s substituents. Analyzing the frontier states and the Independent Gradient Model isosurfaces, we found that noncovalent interactions contribute to the stabilization of the complexes. Through the charge distribution, we observed that the metal also polarizes the density of the coordination bond. With these results we can conclude that metal centers and noncovalent interactions play an important role in the stabilization of nanoballs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lehn J-M (1988) Supramolecular Chemistry-Scope and perspectives molecules, supermolecules, and molecular devices(nobel lecture), vol 27

  2. Menger FM (2002) Supramolecular chemistry and self-assembly. Proc Natl Acad Sci U.S.A 99 (8):4818–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cook TR, Zheng Y-R, Stang PJ (2012) Metal - organic frameworks and self-assembled supramolecular coordination complexes : comparing and contrasting the design, synthesis, and functionality of metal - organic materials. 113(1):734–777

  4. Casini A, Woods B, Wenzel M (2017) The promise of self-assembled 3D supramolecular coordination complexes for biomedical applications. Inorg Chem 56(24):14715–14729

    Article  CAS  PubMed  Google Scholar 

  5. Ahmedova A (2018) Biomedical applications of metallosupramolecular assemblies-structural aspects of the anticancer activity. Front. Chem. 6

  6. Gangemi CMA, Puglisi R, Pappalardo A, Sfrazzetto GT (2018) Supramolecular complexes for nanomedicine. Bioorg Med Chem Lett 28(20):3290–3301

    Article  CAS  PubMed  Google Scholar 

  7. Wei C, He Y, Shi X, Song Z (2019) Terpyridine-metal complexes: applications in catalysis and supramolecular chemistry. Coord Chem Rev 385:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM (2007) A double concave hydrocarbon buckycatcher. J Am Chem Soc 129(13):3842–3843

    Article  CAS  PubMed  Google Scholar 

  9. Rybtchinski Boris (2011) Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano 5(9):6791–6818

    Article  CAS  PubMed  Google Scholar 

  10. Hudson KL, Bartlett GJ, Diehl RC, Agirre J, Gallagher T, Kiessling LL, Woolfson DN (2015) Carbohydrate–aromatic interactions in proteins. J Am Chem Soc 137(48):15152–15160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rest C, Kandanelli R, Fernández G (2015) Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem Soc Rev 44(8):2543–2572

    Article  CAS  PubMed  Google Scholar 

  12. Biedermann F, Schneider H-J (2016) Experimental binding energies in supramolecular complexes. Chem Rev 116(9):5216–5300

    Article  CAS  PubMed  Google Scholar 

  13. Vyas VS, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz JP, Lotsch BV (2016) Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv Mater 28(39):8749–8754

    Article  CAS  PubMed  Google Scholar 

  14. Samanta PN, Das KK (2017) Noncovalent interaction assisted fullerene for the transportation of some brain anticancer drugs a theoretical study, vol 72

  15. Chen L, Xiang J, Zhao Y, Yan Q (2018) Reversible self-assembly of supramolecular vesicles and nanofibers driven by chalcogen-bonding interactions. J Am Chem Soc 140(23):7079–7082

    Article  CAS  PubMed  Google Scholar 

  16. Kokan Z, Kovačević B, Štefanić Z, Tzvetkova P, Kirin S (2018) Controlling orthogonal self-assembly through :Cis - Trans isomerization of a non-covalent palladium complex dimer. ChemComm 54(17):2094–2097

    CAS  Google Scholar 

  17. Prochowicz D, Kornowicz A, Justyniak I, Lewiṅski J (2016) Metal complexes based on native cyclodextrins synthesis and structural diversity. Coord Chem Rev 306:331–345

    Article  CAS  Google Scholar 

  18. Caturello NAMS, Csȯk Z, Fernȧndez G, Albuquerque RQ (2016) Influence of metal, ligand and solvent on supramolecular polymerizations with Transition-Metal compounds: a theoretical study. Chem Eur J 22(49):17681–17689

    Article  CAS  PubMed  Google Scholar 

  19. Dhamija A, Saha B, Rath SP (2017) Metal-center-driven supramolecular chirogenesis in tweezer amino alcohol complexes, structural, spectroscopic, and theoretical investigations. Inorg Chem 56(24):15203–15215

    Article  CAS  PubMed  Google Scholar 

  20. Ji W, Yuan C, Zilberzwige-Tal S, Xing R, Chakraborty P, Tao K, Gilead S, Yan X, Gazit E (2019) Metal-Ion modulated structural transformation of Amyloid-Like dipeptide supramolecular self-assembly. ACS Nano 13(6):7300–7309

    Article  CAS  PubMed  Google Scholar 

  21. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116 (5):2775–2825

    Article  CAS  PubMed  Google Scholar 

  22. Ponce-Vargas M, Muṅoz-Castro A (2016) Tiara-like complexes acting as iodine encapsulating agents the role of M⋯I Interactions in [M(μ-SCH2CO2Me)2]8I2 (M = Ni, Pd, Pt) inclusion compounds. J Phys Chem C 120(41):23441–23448

    Article  CAS  Google Scholar 

  23. Alkorta I, Elguero J, Frontera A (2020) Not only hydrogen bonds: Other noncovalent interactions. Crystals 10(3)

  24. Herkert L, Sampedro A, Fernȧndez G (2016) Cooperative self-assembly of discrete metal complexes. CrystEngComm 18(46):8813–8822

    Article  CAS  Google Scholar 

  25. Tominaga M, Suzuki K, Murase T, Fujita M (2005) 24-fold endohedral functionalization of a self-assembled M 12 L 24 coordination nanoball. J Am Chem Soc 127(34):11950– 11951

    Article  CAS  PubMed  Google Scholar 

  26. Bhat IA, Samanta D, Mukherjee PS (2015) A Pd 24 pregnant molecular nanoball: self-templated stellation by precise mapping of coordination sites. J Am Chem Soc 137(29):9497–9502

    Article  CAS  PubMed  Google Scholar 

  27. del Castillo R, Salcedo R, Marti̇nez A, Ramos E, Sansores L (2019) Electronic Peculiarities of a Self-Assembled M12L24, Nanoball (M = Pd+ 2 Cr, or Mo). Molecules 24(4):771

    Article  PubMed Central  CAS  Google Scholar 

  28. Yamashina Y, Kataoka Y, Ura Y (2014) Inclusion of an iodine molecule in a tiara-like octanuclear palladium thiolate complex. Eur J Inorg Chem 2014(25):4073–4078

    Article  CAS  Google Scholar 

  29. Eaton DR, Zaw K (1972) Geometry of nickel(II) complexes. J Am Chem Soc 94(12):4394–4395

    Article  CAS  Google Scholar 

  30. Zuckerman JJ (1965) Crystal field splitting diagrams. J Chem Educ 42(6):315

    Article  CAS  Google Scholar 

  31. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  32. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  33. Dirac PAM (1929) Quantum mechanics of many-electron systems. Proc R Soc A Math Phys Eng Sci 123(792):714–733

    CAS  Google Scholar 

  34. Slater JC (1951) A simplification of the hartree-fock method. Phys Rev 81(3):385–390

    Article  CAS  Google Scholar 

  35. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  PubMed  Google Scholar 

  37. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted gaussian basis sets for atoms li to kr. J Chem Phys 97(4):2571–2577

    Article  Google Scholar 

  38. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor Chem Accounts 97 (1-4):119–124

    Article  CAS  Google Scholar 

  39. Weigend F (2006) Accurate coulomb-fitting basis sets for h to rn. Phys Chem Chem Phys 8 (9):1057–1065

    Article  CAS  PubMed  Google Scholar 

  40. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  PubMed  Google Scholar 

  41. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J Chem Phys 132(15):154104

    Article  PubMed  CAS  Google Scholar 

  42. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  PubMed  Google Scholar 

  43. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. (1989) Electronic structure calculations on workstation computers The program system turbomole. Chem Phys Lett 162(3):165–169

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian1~6 Revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  45. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms sc to hg. J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  46. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. potentials for k to au including the outermost core orbitals. J Chem Phys 82(1):299–310

    Article  CAS  Google Scholar 

  47. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. potentials for main group elements na to bi. J Chem Phys 82(1):284–298

    Article  CAS  Google Scholar 

  48. Koopmans T (1934) ÜBer die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1(1-6):104–113

    Article  Google Scholar 

  49. Janak JF (1978) Proof that \(\frac {\partial e}{\partial n_{i}}={\epsilon }\) in density-functional theory. Phys Rev B 18(12):7165

    Article  CAS  Google Scholar 

  50. Collantes ER, Dunn WJ III (1995) Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogs. J Med Chem 38(14):2705–2713

    Article  CAS  PubMed  Google Scholar 

  51. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517

    Article  CAS  Google Scholar 

  52. Delley B (2000) From molecules to solids with the dmol 3 approach. J Chem Phys 113 (18):7756–7764

    Article  CAS  Google Scholar 

  53. Dassault Systèmes B. I. O. V. I. A. (2016) Biovia materials studio 2016, San Diego, Dassault Systèmes

  54. Lefebvre C, Rubez G, Khartabil H, Boisson J-C, Contreras-García J, Hénon E (2017) Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys Chem Chem Phys 19(27):17928–17936

    Article  CAS  PubMed  Google Scholar 

  55. Lefebvre C, Khartabil H, Boisson J-C, Contreras-García J, Piquemal J-P, Hénon E (2018) The independent gradient model: a new approach for probing strong and weak interactions in molecules from wave function calculations. ChemPhysChem 19(6):724–735

    Article  CAS  PubMed  Google Scholar 

  56. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) Nciplot: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7 (3):625–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ponce-Vargas M, Lefebvre C, Boisson J-C, Hénon E (2019) Atomic decomposition scheme of noncovalent interactions applied to host–guest assemblies. J Chem Inf Model 60(1):268–278

    Article  CAS  Google Scholar 

  59. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33 (5):580–592

    Article  CAS  PubMed  Google Scholar 

  60. Dennington R, Keith TA, Millam JM (2016) Gaussview Version 6.0. 16. Semichem Inc Shawnee Mission KS

  61. Steffen C, Thomas K, Huniar U, Hellweg A, Rubner O, Schroer A (2010) Tmolex—a graphical user interface for turbomole. J Comput Chem 31(16):2967–2970

    CAS  PubMed  Google Scholar 

  62. Hanson RM et al (2008) Jmol: an open-source java viewer for chemical structures in 3d. http://www.jmol.org/sourceforge.net

  63. Pedretti A, Villa L, Vistoli G (2004) Vega–an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des 18(3):167–173

    Article  CAS  PubMed  Google Scholar 

  64. Humphrey W, Dalke A, Schulten K et al (1996) Vmd: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  65. Slater JC (1964) Atomic radii in crystals. J Chem Phys 41(10):3199–3204

    Article  CAS  Google Scholar 

  66. Connolly ML (1985) Computation of molecular volume. J Am Chem Soc 107(5):1118–1124

    Article  CAS  Google Scholar 

  67. Lu Q, Neese F, Bistoni G (2019) London dispersion effects in the coordination and activation of alkanes in σ-complexes: a local energy decomposition study. Phys Chem Chem Phys 21(22):11569–11577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by DGAPA-PAPIIT (BG100320/31), Consejo Nacional de Ciencia y Tecnología (CONACyT), and resources provided by the Instituto de Investigaciones en Materiales (IIM). This work was carried out using a NES supercomputer, provided by Dirección General de Cómputo y Tecnologías de Información y Comunicación (DGTIC), Universidad Nacional Autónoma de México (UNAM). We would like to thank the DGTIC of UNAM for their excellent and free supercomputing. Authors would like to acknowledge Alberto López, Alejandro Pompa, Graciela España, Oralia L Jiménez, María Teresa Vázquez and Cain González for their technical support. JGF acknowledges support from CONACyT through the scholarship grant 336100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estrella Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Flores, J., Pérez-Figueroa, S.E., Castillo, R.M.d. et al. Stability of spherical molecular complexes: a theoretical study of self-assembled M12L24 nanoballs. Struct Chem 32, 775–785 (2021). https://doi.org/10.1007/s11224-020-01639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01639-0

Keywords

Navigation