Skip to main content
Log in

Stereochemistry and tautomerism of silicon-containing 1,2,3-triazole: ab initio and NMR study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this paper, an approach is proposed for determining the ratio of prototropic annular tautomers of organosilicon 1,2,3-triazoles, which are hardly experimentally determined in solution by NMR technique. The comparison of experimental and calculated (at the CCSD level) NMR chemical shifts allows the predominant tautomer in the equilibrium mixture to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1

Similar content being viewed by others

References

  1. Krivolapov VP, Shkurko OP (2005). Russ Chem Rev 74:339–379

    Article  Google Scholar 

  2. Larina LI, Lopyrev VA (2009) Nitroazoles: Synthesis, structure and applications. Springer, New York

    Book  Google Scholar 

  3. Larina LI (2018). Adv Heterocycl Chem 124:233–321

    Article  CAS  Google Scholar 

  4. Larina LI (2020) Organosilicon azoles: structure, silylotropy and NMR spectroscopy. Adv Heterocycl Chem. https://doi.org/10.1016/bs.aihch.2019.08.001

  5. Medvedeva AS, Demina MM, Konkova TV, Vu TD, Larina LI (2014). Chem Heterocycl Comp 50:967–971

    Article  CAS  Google Scholar 

  6. Elguero J, Katritzky AR, Denisko OV (2000). Adv Heterocycl Chem 76:1

    Article  CAS  Google Scholar 

  7. Minkin VI, Garnovskii AD, Elguero J, Katritzky AR, Denisko OV (2000). Adv Heterocycl Chem 76:159

    Google Scholar 

  8. Vu TD, Demina MM, Shaglaeva NS, Medvedeva AS (2015) Siberian winter conference “current topics in organic chemistry” Sheregesh, Russia

  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09, Revision C01. Gaussian, Inc, Wallingford http://www.gaussian.com Accessed 25 Mar 2020

    Google Scholar 

  10. Tomasi J, Mennucci B, Cancès E (1999). Theochem 464:211–226

    Article  CAS  Google Scholar 

  11. Stanton JF, Gauss J, Harding ME, Szalay PG, Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, CFOUR, a quantum chemical program package http://www.cfour.de Accessed 25 Mar 2020

  12. Jensen F (2008). J Chem Theory Comput 4:719–727

    Article  CAS  Google Scholar 

  13. Semenov VA, Samultsev DO, Krivdin LB (2019). Magn Reson Chem 57:346–358

    Article  CAS  Google Scholar 

  14. Semenov VA, Samultsev DO, Krivdin LB (2019). J Phys Chem A 123:8417–8426

    Article  CAS  Google Scholar 

  15. Semenov VA, Krivdin LB (2020). Magn Reson Chem 58:56–64

    Article  CAS  Google Scholar 

  16. Harris RK, Becker ED, Cabral de Menezes SM, Granger P, Hoffman RE, Zilm KW (2008). Pure Appl Chem 80:59–84

    Article  CAS  Google Scholar 

  17. Barone V, Peralta JE, Contreras RH, Sosnin AV, Krivdin LB (2001). Magn Reson Chem 39:600–606

    Article  CAS  Google Scholar 

  18. Chernyshev KA, Krivdin LB, Larina LI, Konkova TV, Demina MM, Medvedeva AS (2007). Magn Reson Chem 45:661–668

    Article  CAS  Google Scholar 

  19. Schmider HL, Becke AD (2000). J Mol Struct–Theochem 527:51–61

    Article  CAS  Google Scholar 

  20. Schmider HL, Becke AD (2002). J Chem Phys 116:3184–3193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed using the analytical equipment and computational facilities of the Baikal Centre for Collective Use of the SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin A. Semenov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.A., Larina, L.I. & Demina, M.M. Stereochemistry and tautomerism of silicon-containing 1,2,3-triazole: ab initio and NMR study. Struct Chem 31, 1927–1933 (2020). https://doi.org/10.1007/s11224-020-01570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01570-4

Keywords

Navigation