Skip to main content
Log in

Detection of bendamustine anti-cancer drug via AlN and Si-doped C nanocone and nanosheet sensors by DFT

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Bendamustine or Treanda™ is used as an anti-cancer drug, especially in treatment of hematologic malignancies. In view of the immense importance of drug/sensor issues, here we report adsorption behavior of this drug in presence of six nanosensors including aluminum nitride (AlN), carbon, and Si-doped carbon nanocones and nanosheets, at B3LYP/6-31G* level of theory. Electrical conductivity of these nanoadsorbents is probed against that of bendamustine for assessing their abilities of drug sensing with possible implications in drug delivery. The adsorption energy (Ead), doping energy (Edop), HOMO energy (EH), LUMO energy (EL), HOMO-LUMO band gap (Eg), change of band gaps in percent (%∆Eg), change of natural bond orbital (NBO) charges (∆Q), conduction electron population (N), and density of state (DOS) plots are calculated. More Ead, ∆Q, and N values imply more interaction between bendamustine and nanosensor which lead to a strong recognition of the drug. The interaction of AlN nanosheet and bendamustine shows the highest Ead, %∆Eg, and ∆Q (− 28.8 kcal/mol, − 33.6%, and 0.4 e, respectively) which make AlN nanosheet as the most promising among our scrutinized nanosensors. A negative Edop indicates an exothermic doping process, where Si atom improves the electronic sensitivity of C nanocone and nanosheet. All calculated Ead and %∆Eg turn out as negative values which reveal that electrical conductivity of our scrutinized nanostructures are increased upon adsorbing process which makes them efficient sensors for bendamustine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schweitzer C, Schmidt R (2003). Chem Rev 103:1685–1758

    Article  CAS  PubMed  Google Scholar 

  2. Owen JS, Melhem M, Passarell JA, D’Andrea D, Darwish M, Kahl B (2010). Cancer Chemother Pharmacol 66:1039–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balfour JAB, Goa KL (2001). Drugs 61:631–638

    Article  CAS  PubMed  Google Scholar 

  4. Cheson BD, Rummel MJ (2009). J Clin Oncol 27:1492–1501

    Article  CAS  PubMed  Google Scholar 

  5. Teichert J, Baumann F, Chao Q, Franklin C, Bailey B, Hennig L, Caca K, Schoppmeyer K, Patzak U, Preiss R (2007). Cancer Chemother Pharmacol 59:759–770

    Article  CAS  PubMed  Google Scholar 

  6. Leong H, Bonk ME (2009). Pharm Ther 34:73

    Google Scholar 

  7. Darwish M, Burke JM, Hellriegel E, Robertson P, Phillips L, Ludwig E, Munteanu MC, Bond M (2014). Cancer Chemother Pharmacol 73:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weidmann E, Neumann A, Fauth F, Atmaca A, Al-Batran SE, Pauligk C, Jäger E (2011). Ann Oncol 22:1839–1844

    Article  CAS  PubMed  Google Scholar 

  9. Rummel MJ, Al-Batran SE, Kim S-Z, Welslau M, Hecker R, Kofahl-Krause D, Josten K-M, Dürk H, Rost A, Neise M (2005). J Clin Oncol 23:3383–3389

    Article  CAS  PubMed  Google Scholar 

  10. Pönisch W, Rozanski M, Goldschmidt H, Hoffmann FA, Boldt T, Schwarzer A, Ritter U, Rohrberg R, Schwalbe E, Uhlig J (2008). Br J Haematol 143:191–200

    Article  PubMed  CAS  Google Scholar 

  11. Von Minckwitz G, Chernozemsky I, Sirakova L, Chilingirov P, Souchon R, Marschner N, Kleeberg U, Tsekov C, Fritze D, Thomssen C (2005). Anti-Cancer Drugs 16:871–877

    Article  Google Scholar 

  12. Köster W, Stamatis G, Heider A, Avramidis K, Wilke H, Koch JA, Stahl M (2004). Clin Drug Investig 24:611–618

    Article  PubMed  Google Scholar 

  13. Schmittel A, Knödler M, Hortig P, Schulze K, Thiel E, Keilholz U (2007). Lung Cancer 55:109–113

    Article  PubMed  Google Scholar 

  14. Hartmann JT, Mayer F, Schleicher J, Horger M, Huober J, Meisinger I, Pintoffl J, Käfer G, Kanz L, Grünwald V (2007). Cancer Interdiscip Int J Am Cancer Soc 110:861–866

    CAS  Google Scholar 

  15. Rasschaert M, Schrijvers D, Van den Brande J, Dyck J, Bosmans J, Merkle K, Vermorken JB (2007). Anti-Cancer Drugs 18:587–595

    Article  CAS  PubMed  Google Scholar 

  16. Leoni LM, Bailey B, Reifert J, Bendall HH, Zeller RW, Corbeil J, Elliott G, Niemeyer CC (2008). Clin Cancer Res 14:309–317

    Article  CAS  PubMed  Google Scholar 

  17. Tageja N, Nagi J (2010). Cancer Chemother Pharmacol 66:413–423

    Article  CAS  PubMed  Google Scholar 

  18. Leoni LM (2011) In Semin Hematol. Elsevier, p S4–S11

  19. Köster W, Heider A, Niederle N, Wilke H, Stamatis G, Fischer JR, Koch JA, Stahl M (2007). J Thorac Oncol 2:312–316

    Article  PubMed  Google Scholar 

  20. Mengali S, Luciani D, Viola R, Liberatore N, Zampolli S, Elmi I, Cardinali G, Poggi A, Dalcanale E, Biavardi E (2013) SPIE newsroom [internet]

  21. Drummer OH (2005). Forensic Sci Int 150:133–142

    Article  CAS  PubMed  Google Scholar 

  22. Onsori S, Alipour E (2018). J Mol Graph Model 79:223–229

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Wan X, Li G, Yu J, Vahabi V (2019). Phys Lett A:126128

  24. Liu L, Lv H, Wang C, Ao Z, Wang G (2016). Electrochim Acta 206:259–269

    Article  CAS  Google Scholar 

  25. Khorram R, Raissi H, Morsali A (2017). J Mol Liq 240:87–97

    Article  CAS  Google Scholar 

  26. Maria JP, Nagarajan V, Chandiramouli R, Inorg J (2019). Organomet Polym Mater:1–10

  27. Chen X, Zhu J, Xi Q, Yang W (2012). Sensors Actuators B Chem 161:648–654

    Article  CAS  Google Scholar 

  28. Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y (2018). Anal Chem 90:2618–2624

    Article  CAS  PubMed  Google Scholar 

  29. Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012). Microelectron J 43:452–455

    Article  CAS  Google Scholar 

  30. Rastegar SF, Hadipour NL, Soleymanabadi H (2014). J Mol Model 20:2439

    Article  PubMed  CAS  Google Scholar 

  31. Rostami Z, Soleymanabadi H (2017). J Mol Liq 248:473–478

    Article  CAS  Google Scholar 

  32. de Paiva R, Azevedo S, Kaschny JR (2007). Nanotechnology 18:315706

    Article  CAS  Google Scholar 

  33. Garcia AG, Baltazar SE, Castro AHR, Robles JFP, Rubio A (2008). J Comput Theor Nanosci 5:2221–2229

    Article  CAS  Google Scholar 

  34. Peyghan AA, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012). Physica E 44:1357–1360

    Article  CAS  Google Scholar 

  35. Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012). Sensors Actuators B Chem 161:1025–1029

    Article  CAS  Google Scholar 

  36. Li X, Hu A, Jiang J, Ding R, Liu J, Huang X (2011). J Solid State Chem 184:2738–2743

    Article  CAS  Google Scholar 

  37. Lu Z, Dai W, Lin X, Liu B, Zhang J, Ye J, Ye J (2018). Electrochim Acta 266:94–102

    Article  CAS  Google Scholar 

  38. Ahmadi R, Jalali Sarvestani MR, Taghavizad R, Rahim N (2020). Chem Methodol 4:68–79

    Article  CAS  Google Scholar 

  39. Javarsineh SA, Vessally E, Bekhradnia A, Hosseinian A, Ahmadi S (2018). J Clust Sci 29:767–775

    Article  CAS  Google Scholar 

  40. Saedi L, Jameh-Bozorghi S, Maskanati M, Soleymanabadi H (2018). Inorg Chem Commun 90:86–91

    Article  CAS  Google Scholar 

  41. Ouyang T, Qian Z, Ahuja R, Liu X (2018). Appl Surf Sci 439:196–201

    Article  CAS  Google Scholar 

  42. Niu F, Liu J-M, Tao L-M, Wang W, Song W-G (2013). J Mater Chem A 1:6130–6133

    Article  CAS  Google Scholar 

  43. Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali L (2016). Superlattice Microst 100:350–357

    Article  CAS  Google Scholar 

  44. Beheshtian J, Peyghan AA, Noei M (2013). Sensors Actuators B Chem 181:829–834

    Article  CAS  Google Scholar 

  45. Duverger E, Balme S, Bechelany M, Miele P, Picaud F (2019). Appl Surf Sci 475:666–675

    Article  CAS  Google Scholar 

  46. Farhang Rik B, Ahmadi R, Karegar Razi M (2019). Iran Chem Commun 7:405–414

    Google Scholar 

  47. Padash R, Sobhani-Nasab A, Rahimi-Nasrabadi M, Mirmotahari M, Ehrlich H, Rad AS, Peyravi M (2018). Appl Phys A Mater Sci Process 124:582

    Article  CAS  Google Scholar 

  48. Khaleghian M, Azarakhshi F (2019). Mol Phys:1–11

  49. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993). J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  50. Gordon MS, Schmidt MW (2005) In Theory Appl Comput Chem. Elsevier, p 1167–1189

  51. Johansson A, Kollman P, Rothenberg S (1973). Theor Chim Acta 29:167–172

    Article  CAS  Google Scholar 

  52. Ahmadi Peyghan A, Hadipour NL, Bagheri Z (2013). J Phys Chem C 117:2427–2432

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Z. Kassaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1427 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoubi-Chianeh, M., Kassaee, M.Z. Detection of bendamustine anti-cancer drug via AlN and Si-doped C nanocone and nanosheet sensors by DFT. Struct Chem 31, 2041–2050 (2020). https://doi.org/10.1007/s11224-020-01561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01561-5

Keywords

Navigation