Skip to main content
Log in

Preorganization-enhanced halogen bonding via intramolecular hydrogen bonding: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Cationic and neutral halogen bonding (XB) donors use two types (I and II) of intramolecular hydrogen bonding (HB) to preorganize structures and increase the efficiency of halide anion recognition. Herein, several XB donors with and without preorganization function were studied. The amine group was introduced to form type I intramolecular HBs (inside of the binding site) for cationic XB donors, and the hydroxyl group was employed to provide type II intramolecular HBs (outside of the binding site) for neutral XB donors. From energetic prospective, the complexation between the receptors and halide anions was enhanced with the preorganization function, which is mainly contributed by the improved coplanarity of the donor geometries. The type II intramolecular HBs are predicted to be much stronger than the type I intramolecular HBs, and the coplanarity of the preorganization structures including type II intramolecular HBs would be further improved with the binding of halide anions. We hope that the results reported herein will assist in the application of preorganization in anion recognition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cram DJ (1986). Angew Chem Int Ed Eng 25:1039–1057

    Article  Google Scholar 

  2. Lehn J-M (2002). Proc Natl Acad Sci U S A 17:4763–4768

    Article  CAS  Google Scholar 

  3. Wittenberg JB, Isaacs L (2012) In: Gale PA, Steed JW (ed)  Supramolecular chemistry: from molecules to nanomaterials. Wiley, Chichester

  4. Myers JK, Oas TG (2001). Nat Struct Mol Biol 8:552–558

    Article  CAS  Google Scholar 

  5. Benfield AP, Teresk MG, Plake HR, DeLorbe JE, Millspaugh LE, Martin SF (2006). Angew Chem 118:6984–6989

    Article  Google Scholar 

  6. Adamczyk AJ, Cao J, Kamerlin SCL, Warshel A (2011). Proc Natl Acad Sci U S A 108:14115–14120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sherrington DC, Taskinen KA (2001). Chem Soc Rev 30:83–93

    Article  CAS  Google Scholar 

  8. Santacroce PV, Davis JT, Light ME, Gale PA, Iglesias-Sanchez JC, Prados P, Quesada R (2007). J Am Chem Soc 129:1886–1887

    Article  CAS  PubMed  Google Scholar 

  9. Lee S, Hua Y, Park H, Flood AH (2010). Org Lett 12:2100–2102

    Article  CAS  PubMed  Google Scholar 

  10. McDonald KP, Qiao B, Twum EB, Lee S, Gamache PJ, Chen C-H, Yi Y, Flood AH (2014). Chem Commun 50:13285–13288

    Article  CAS  Google Scholar 

  11. Shang J, Si W, Zhao W, Che Y, Hou J-L, Jiang H (2014). Org Lett 16:4008–4011

    Article  CAS  PubMed  Google Scholar 

  12. Kline MA, Wei X, Horner IJ, Liu R, Chen S, Yung KY, Yamato K, Cai Z, Bright FV, Zeng XC, Gong B (2015). Chem Sci 6:152–157

    Article  CAS  PubMed  Google Scholar 

  13. Kim SK, Sessler JL (2010). Chem Soc Rev 39:3784–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McConnell AJ, Beer PD (2012). Angew Chem Int Ed 51:5052–5061

    Article  CAS  Google Scholar 

  15. Kim SK, Sessler JL (2014). Acc Chem Res 47:2525–2536

    Article  CAS  PubMed  Google Scholar 

  16. Salorinne K, Nissinen M (2008). Tetrahedron 64:1798–1807

    Article  CAS  Google Scholar 

  17. Xu Z, Singh NJ, Lim J, Pan J, Kim HN, Park S, Kim KS, Yoon J (2009). J Am Chem Soc 131:15528–15533

    Article  CAS  PubMed  Google Scholar 

  18. Fernández-Lodeiro J, Núñez C, de Castro CS, Bertolo E, Seixas de Melo JS, Capelo JL, Lodeiro C (2013). Inorg Chem 52:121–129

    Article  PubMed  CAS  Google Scholar 

  19. Molina P, Zapata F, Caballero A (2017). Chem Rev 117:9907–9972

    Article  CAS  PubMed  Google Scholar 

  20. Murray TJ, Zimmerman SC (1992). J Am Chem Soc 114:4010–4011

    Article  CAS  Google Scholar 

  21. Bell DA, Anslyn EV (1995). Tetrahedron 51:7161–7172

    Article  CAS  Google Scholar 

  22. Gong B, Yan Y, Zeng H, Skrzypczak-Jankunn E, Kim YW, Zhu J, Ickes H (1999). J Am Chem Soc 121:5607–5608

    Article  CAS  Google Scholar 

  23. Yang X, Brown AL, Furukawa M, Li S, Gardinier WE, Bukowski EJ, Bright FV, Zheng C, Zeng XC, Gong B (2003). Chem Commun 56–57

  24. Blight BA, Camara-Campos A, Djurdjevic S, Kaller M, Leigh DA, McMillan FM, McNab H, Slawin AMZ (2009). J Am Chem Soc 131:14116–14122

    Article  CAS  PubMed  Google Scholar 

  25. Rudkevich DM, Hilmersson G, Rebek J (1997). J Am Chem Soc 119:9911–9912

    Article  CAS  Google Scholar 

  26. Rudkevich DM (2000). Chem-Eur J 6:2679–2686

    Article  CAS  PubMed  Google Scholar 

  27. Purse BW, Rebek J (2005). Proc Natl Acad Sci U S A 102:10777–10782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Biros SM, Rebek Jr J (2007). Chem Soc Rev 36:93–104

    Article  CAS  PubMed  Google Scholar 

  29. Vargas Jentzsch A, Hennig A, Mareda J, Matile S (2013). Acc Chem Res 46:2791–2800

    Article  CAS  PubMed  Google Scholar 

  30. Hamuro Y, Geib SJ, Hamilton AD (1994). Angew Chem Int Ed Eng 33:446–448

    Article  Google Scholar 

  31. Zhang D-W, Zhao X, Hou J-L, Li Z-T (2012). Chem Rev 112:5271–5316

    Article  CAS  PubMed  Google Scholar 

  32. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007). J Mol Model 13:305–311

    Article  CAS  PubMed  Google Scholar 

  33. Riley KE, Murray JS, Fanfrlík J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2011). J Mol Model 17:3309–3318

    Article  CAS  PubMed  Google Scholar 

  34. Politzer P, Murray JS (2013). ChemPhysChem 14:278–294

    Article  CAS  PubMed  Google Scholar 

  35. Riley KE, Murray JS, Fanfrlík J, Rezac J, Sola RJ, Conche MC, Ramos FM, Politzer P (2013). J Mol Model 19:4651–4659

    Article  CAS  PubMed  Google Scholar 

  36. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016). Chem Rev 116:2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Politzer P, Riley KE, Bulat FA, Murray JS (2012). Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  38. Politzer P, Murray JS, Clark T (2013). Phys Chem Chem Phys 15:11178–11189

    Article  CAS  PubMed  Google Scholar 

  39. Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD (2015). Chem Rev 115:7118–7195

    Article  CAS  PubMed  Google Scholar 

  40. Mukherjee A, Tothadi S, Desiraju GR (2014). Acc Chem Res 47:2514–2524

    Article  CAS  PubMed  Google Scholar 

  41. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M, Terraneo G (2010). Chem Soc Rev 39:3772–3783

    Article  CAS  PubMed  Google Scholar 

  42. Riel AMS, Decato DA, Sun J, Massena CJ, Jessop MJ, Berryman OB (2018). Chem Sci 9:5828–5836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tepper R, Schulze B, Görls H, Bellstedt P, Jager M, Schubert US (2015). Org Lett 17:5740–5743

    Article  CAS  PubMed  Google Scholar 

  44. Bader RFW (1985). Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  45. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-Garcis J, Cohen AJ, Yang W (2010). J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  47. Zapata F, Caballero A, White NG, Claridge TDW, Costa PJ, Felix V, Beer PD (2012). J Am Chem Soc 134:11533–11541

    Article  CAS  PubMed  Google Scholar 

  48. Jungbauer SH, Huber SM (2015). J Am Chem Soc 137:12110–12120

    Article  CAS  PubMed  Google Scholar 

  49. Scheiner S (2017). Faraday Discuss 203:213–226

    Article  CAS  PubMed  Google Scholar 

  50. Scheiner S, Michalczyk M, Zierkiewicz W (2020). Coord Chem Rev 405:213136

    Article  CAS  Google Scholar 

  51. Zhao Y, Truhlar DG (2008). Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  52. Hohenstein EG, Chill ST, Sherrill CD (2008). J Chem Theory Comput 4:1996–2000

    Article  CAS  PubMed  Google Scholar 

  53. Zhao Y, Truhlar DG (2008). J Chem Theory Comput 4:1849–1868

    Article  CAS  PubMed  Google Scholar 

  54. Zhao Y, Truhlar DG (2008). Acc Chem Res 41:157–167

    Article  CAS  PubMed  Google Scholar 

  55. Kozuch S, Martin JML (2013). J Chem Theory Comput 9:1918–1931

    Article  CAS  PubMed  Google Scholar 

  56. Walker M, Harvey AJA, Sen A, Dessent CEH (2013). J Phys Chem A 117:12590–12600

    Article  CAS  PubMed  Google Scholar 

  57. Grimme S, Antony J, Ehrlich S, Krieg H (2010). J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  58. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003). J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  59. Kendall RA, Dunning TH, Harrison RJ (1992). J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian 09, (2013) Gaussian Inc, Wallingford

  61. Lu T, Chen F (2012). J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  62. Humphrey W, Dalke A, Schulten K (1996). J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  63. Espinosa E, Molins E, Lecomte C (1998). Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  64. Becke AD (1988). J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China (91834301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoze Zhang or Yunxiang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, S., Xu, Z. et al. Preorganization-enhanced halogen bonding via intramolecular hydrogen bonding: a theoretical study. Struct Chem 31, 1999–2009 (2020). https://doi.org/10.1007/s11224-020-01559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01559-z

Keywords

Navigation